
Optimizing Traffic in Public-Facing Data Centers
Amid Internet Protocols
Sen Lin∗, Jianfeng Wang†, Aleksandar Kuzmanovic∗
∗Northwestern University, USA †Oracle America, Inc.

sen.lin@u.northwestern.edu, pkueewjf@gmail.com, akuzma@northwestern.edu

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
This is the author’s accepted manuscript. The final published version is available at DOI: 10.1109/ICNP61940.2024.10858510.

Abstract—Rapid development has been witnessed in optimizing
the performance of data centers over the past decade. However,
such advances thriving in private data centers are rarely deployed
in public-facing data centers. A major challenge is synchronizing
optimization signals—such as flow sizes, server assignments,
and load information—with the traffic they are intended to
optimize, especially across networks controlled by different
entities. In this paper, we propose CLOUDCOOKIE, a versatile
signal carrier within Internet protocols that ensures bidirectional
signal presence without client-side cooperation. To exemplify
CLOUDCOOKIE’s benefits on public-facing data center traffic,
we design a set of easy-to-deploy data center infrastructures,
including load balancers and switches, to leverage application
layer awareness and enable efficient flow packet scheduling
and load balancing. Our evaluation shows that these advances
synergistically optimize the 99th percentile of flow completion
time by up to 20x for the majority of flows.

I. INTRODUCTION

The performance of data-center networks (DCN) continues
to thrive due to ever-improving techniques and systems de-
ployed at different DCN layers [1]–[5]. Contrary to the public
Internet where a consensus among multiple disjoint entities
needs to be reached before any deployment is made, data
centers require no such consensus. Indeed, the data center
centralization is one of the key reasons driving significant
progress in this space. However, these advances, which have
proven successful within private data centers, where both
endpoints and the intermediate network devices are controlled
by the same data center authority, are rarely deployed in
public-facing data centers that serve general web users and
handle most of today’s Internet traffic. [6].

A public-facing data center authority no longer has central
control because the network between the client and server can
be segmented by multiple entities (Figure 1). For example,
a client’s request must first traverse the local ISP. Next,
from the local ISP to the destination data center, the traffic
could (1) be shipped on other portions of the public Internet,
e.g., ISPs, IXPs, or third-party DCNs (P1); (2) directly enter
the controlled DCNs (P5); or (3) bounce back and forth
between the public Internet and controlled DCNs (P2, P3,
and P4), when inter-DC traffic needs to be transited via third

†Work done while the author was at University of Southern California.
Any opinions, findings, conclusions, or recommendations expressed herein
are those of the authors and do not necessarily reflect the views of Oracle
America, Inc.

Earlier
Traffic
Entry

Larger
Controlled
Portion

P1

P4

P2

P3

P5

Client Server

Fig. 1. Different paths of routing public-facing traffic. Network devices
(circles) and autonomous systems (ASes, dashed rectangles) are color-coded:
green and red indicate whether the device/AS is controlled by the same
authority as the destination DCN. Source and destination ASes are highlighted.

parties. The uncontrolled off-net partitions prevent data center
advances from being deployed in public-facing data centers.

As a consequence, synchronizing public-facing traffic with
optimization signals for achieving advanced traffic handling
becomes challenging. First, the compatibility requirements of
Internet protocols prevent the deployment of custom head-
ers, e.g., packet encapsulation. Second, due to the inevitable
traversal through uncontrolled devices, common signal fields
in Internet protocols, e.g., Traffic Class, are low-res and
volatile. Third, without the cooperation from the client-side, it
is difficult to ensure the signal presence in the traffic from end
users. Last, connections initiated by end users, unlike internal
services, introduce increased uncertainty, e.g., varied sizes,
bursty arrivals, and dynamic routing. Out-of-bound (OOB)
channels hence fail to enable timely and spatially aligned
signal communication. As in the example of Figure 1, it is
uncertain which path will be chosen. Given these restrictions,
we ask: if it is possible, and how, to utilize private-DCN
advances in public-facing data center settings?

This question is becoming even more relevant as DCN
authorities have significantly moved forward their boundaries
and enlarged the network control over the past decades. In
particular, tech giants construct new data centers closer to
client endpoints (P2 and P5) and deploy off-net infrastructures
in clients’ eyeball networks (P3, P4, and P5) as shown in
Figure 1 [6]–[9]. The ideal scenario is P5, despite the client
endpoint is still out of control. There are two incentives
behind this flattering Internet trend. On one hand, directing
the traffic to enter the DCN earlier can significantly reduce
operational costs, including peering expenses. On the other
hand, an increased control over the traffic by the same DCN
authority enables more optimization on both data and control
planes. With a growing overlap with inter-DC traffic, public-979-8-3503-5171-2/24/$31.00 ©2024 IEEE

https://doi.org/10.1109/ICNP61940.2024.10858510

facing traffic from data centers of these giants now contributes
more than half of the global Internet traffic [6].

In this paper, we aim to optimize the overall performance of
public-facing traffic, and propose CLOUDCOOKIE as a lever
for harnessing the expanded control within the data center.
CLOUDCOOKIE serves as an optimization signal carrier em-
bedded in Internet protocols, offering several properties that
are key for advanced public-facing DCN traffic handling:
(1) versatility, as its spacious coding space allows assorted
expressive signals for different optimization techniques; (2)
deployability, as its bidirectional presence requires no client-
side modification and it’s hot-swappable to existing Inter-
net ecosystem; (3) timeliness, with signals piggybacked on
regular packets and synchronized in time and space with
their corresponding reaction points; (4) robustness, since
loss occurs only with dropped packets, with transport layer
retransmissions ensuring reliable delivery; and (5) security,
ensuring signal integrity and resistance to tampering through
cryptographic tools.

CLOUDCOOKIE is decoupled from specific optimization
techniques. To exemplify its ability to port private data center
advances into public-facing traffic, we let CLOUDCOOKIE
carry a combination of signals that enable Shortest Remaining
Processing Time (SRPT) flow packet scheduling, for band-
width allocation, and predictive load-aware load balancing, for
traffic distribution. To produce the required signals, i.e., RPT
and loads, we design a CLOUDCOOKIE layer-7 load balancer
(CCLB7) that leverages neglected information in applications
and systems. To consume the signals, we design a stateless
CLOUDCOOKIE layer-4 load balancer (CCLB4), that makes
foresight decisions; and adapt an state-of-the-art in-switch
flow scheduler [10]. In §V, we further analyze the synergistic
optimization of both techniques.

We summarize the contributions of this paper as follows:
• We propose CLOUDCOOKIE, a versatile, deployable,

timely, robust, and secure carrier for optimization signals.
CLOUDCOOKIE enables applying state-of-the-art private
data center optimizations for public-facing traffic.

• CLOUDCOOKIE’s design is hot-swappable: it utilizes In-
ternet protocols and respects the existing Internet ecosys-
tem; it also requires zero client-side modification.

• To serve CLOUDCOOKIE, we propose an easy-to-deploy
infrastructure suite consisting of an optimization signal
producer–CCLB7, and two signal consumers–CCLB4 and
scheduler-on switch.

• For the first time, we implement SRPT flow scheduling
on real-world web traffic, which is characterized by data
flows triggered by bursty end-user requests.

• In emerging QUIC/IPv6 networks, CLOUDCOOKIE uti-
lizes a 64-bit coding space, while, in classic TCP net-
works, the space is limited to 16 bits. In both contexts, we
explore various optimization techniques and their syner-
gistic effects, reducing the 99th percentile flow completion
time (FCT) of the majority flows by up to 20x.

In the rest of this paper, we introduce the challenges and
technical background of handling public-facing traffic in §II.

Compatibility

DiffServ

DPI

Traffic Engineering
OOB

Machine Learning

Packet Encapsulation

Edge

Accuracy

IP Inference

Fig. 2. Comparison of state-of-the-art methods that exchange () and gain
() . The upper-right corner is preferred, which is the goal of CLOUDCOOKIE
().

Then, in §III, we propose our design of CLOUDCOOKIE. In
§IV, we introduce the design of hot-swappable infrastructure
and how they react to CLOUDCOOKIE. After that, we show
our evaluation results and insights in §V. Discussion and
conclusion are presented in §VI and §VII respectively.

II. BACKGROUND AND RELATED WORK

The split central control of public-facing traffic introduces
challenges in exchanging optimization signals among multiple
DCN-controlled network devices (§II-A) and obtaining such
traffic knowledge (§II-B). These challenges highlight certain
ignorance that CLOUDCOOKIE aims to tackle. Additionally,
to clarify our design and approach, we present a multi-tier-
LB architecture abstraction that enables DCN’s adaptation
to CLOUDCOOKIE (§II-C) and state-of-the-art flow packet
scheduling that CLOUDCOOKIE targets to activate (§II-D).

A. Challenges in Signal Exchanges

Figure 2 compares signal exchange methods in two dimen-
sions: their compatibility with the current Internet ecosystem
and their ability to deliver expressive messages accurately
and timely. The most straightforward method is to exchange
optimization signals by utilizing existing fields in IP head-
ers, which are called differentiated service (DiffServ), i.e.,
DSCP 1 in IPv4 and Traffic Class in IPv6 to encode
required information. For example, Mahout [13] uses DSCP
to encode scheduling signals in the packet. This method
boasts high compatibility since it doesn’t require any specific
modifications, yet there are still two issues to consider: First,
the compatibility is compromised because of its volatility.
DiffServ fields are commonly reset or remarked when crossing
controlled network boundaries due to compatibility, policy,
and security concerns [14]. Second, DiffServ’s low resolution,
i.e., 6-bit long excluding 2 ECN bits, forbids deploying fine-
grained optimizations, such as scheduling packets according
to flow sizes or RPT.

1DSCP stands for Differentiated Services Code Point, which was originally
defined as ToS, Type of Service [11], [12].

On the other hand, the OOB communication channel can
serve as an effective method for exchanging signals between
network devices in private data centers. It offers ample coding
space, thereby resolving issues related to resolution. OOB
channels can be established through dedicated messages, e.g.,
pHost [15] and Homa [16], or dedicated connections, e.g.,
the software-defined networking (SDN) family. Nevertheless,
deploying OOB methods in public-facing data centers faces
several challenges. Synchronization issues are at the forefront.
First, the inevitable delays, between optimization signals and
their serving traffic, damage the accuracy of signals. The
damage increases as the reaction points become close to the
client, but distant from the data center where the signal is
generated. We observe recent efforts that optimizes public-
facing traffic with OOB methods [8], [17], [18]. Although
these proposals offer improvements in directing traffic across
multiple paths, we maintain that there remains considerable
potential for optimization within the data plane, particularly
for bursty and ephemeral public-facing traffic. Second, the
spatial unsynchronization of OOB signals with their corre-
sponding reaction points raises additional concerns regard-
ing server compatibility. Transmission paths can differ from
one connection to another or even from packet to packet,
which complicates the issue. Consequently, it is challenging
to ascertain which network devices are the recipients of a
specific signal. Therefore, it becomes infeasible to determine
which network devices ought to be the subscribers for a
certain signal. Third, the implementation of OOB methods
entails increased overheads on resources and bandwidth. The
deployment of these mechanisms typically requires centralized
controllers, and the delivery of OOB signals generates extra
traffic that competes with regular data flows. While such
overheads may be acceptable in private data centers with over-
provisioned resources and bandwidth, this assumption does not
hold in public-facing data centers.

Packet encapsulation resolves synchronization issues by
aligning the optimization signals in bound with the regular
traffic that they serve. Generic tunneling, e.g., GRE [19] and
GENEVE [20], and custom encapsulation, e.g., VL2 [3] and
PDQ [21] are popular methods in this category. However, a
grave concern is that packet encapsulation is often an all-or-
nothing choice. Deploying this technique for a service requires
changing all servers, clients, and optional intermediate network
devices depending on the task. In the case of load balancing, an
unsupported load balancer would reject all encapsulated pack-
ets, while a supported load balancer would discard any packet
that is not encapsulated. Additionally, due to extra headers,
the inflated packet size may exceed the MTU size allowed
on the public Internet. Based on these two reasons, we rate
the compatibility of this method as the lowest level. Moreover,
computational overheads and delays are multiplied by the need
for encapsulation and decapsulation to be performed on each
intermediate device.

So far, all above methods fall short when they come to
preserving signals in packets from unmodified normal clients.
A solution is to deploy edge servers creating a non-intrusive

illusion for client endpoints. Taking encapsulation as an ex-
ample, the edge server is responsible for (1) decapsulating
packets going to clients, (2) maintaining an enormous table to
cache decapsulated headers, and (3) looking up the table and
recovering corresponding headers. It fixes the compatibility
problems for clients, whereas it does not change the situation
of servers and intermediate devices. Moreover, it raises two
new concerns. First, querying a huge table is computation-
ally intensive and, consequently, not scalable. Second, the
effectiveness diminishes if the edge server is located far from
the client endpoint. Thus, one of our primary motivations is
to identify a technique that can offer high accuracy without
compromising compatibility.

B. Challenges in Gaining Traffic Knowledge

Gaining traffic knowledge is essential to derive optimization
signals, and hence another challenge in handling public-
facing traffic. Figure 2 compares state-of-the-art methods. We
categorize these methods based on their underlying causes,
and expand the elaboration accordingly.

a) Low Visibility in Middleboxes: Is it possible to uti-
lize the increase in DCN-controlled middleboxes for better
traffic insight? Unfortunately, the visibility of Internet traffic
is shrinking due to evolving technologies, standards, and
practices. While these changes have positive intentions, they
restrict traffic inference in middleboxes, and hence limit vari-
ous optimization methods. First, web services and content can
no longer be inferred by IP addresses. On the one hand, web
services are less coupled with IP addresses. A service may be
associated with multiple IP addresses, while an IP address can
refer to multiple services. On the other hand, the response con-
tent of web service is not idempotent and is determined upon
each request individually. Even when sending two identical
requests, the second one might be times larger than the first
in size due to the change in content, e.g., the Twitter feeds.
Second, deep packet inspection (DPI) has stronger insights
into complex traffic than IP inference. However, it is at the
compatible margins of today’s Internet traffic as over 90% of
traffic is encrypted [22], [23]. Additionally, the implementation
of HSTS preload list [24] and the rolling out of HTTP/3 [25]
are making traffic encryption become a mandatory standard.
Therefore, it is anticipated that an effective measure should
yield knowledge about public-facing flows directly, rather than
relying on insights from the middlebox.

b) Client-Initiated Connection: Public-facing flows al-
ways initiated by end users increase the uncertainty of traffic
patterns and distribution which further differentiate themselves
from intra- and inter-DC flows. First, indirect observation,
e.g., flow aging [26], [27], is simple yet effective in scheduling
flows with sparsely distributed sizes. In contrast, given that the
majority of public-facing flows are short [4], [28], indirect ob-
servation could prove ineffective or detrimental. Second, to ef-
fectively infer flow sizes, efficient machine learning algorithms
are proposed [29]. Still, the effectiveness is questionable
in public data centers. Recent literature reported that traffic
distributions and volumes varying from service to service and

3rd tier
Layer-7

Application LBs

Public-Facing
Traffic

1st tier
Gateway

LBs

2nd tier
Layer-4

Network LBs

Fig. 3. Multi-tier load balancers that splits public-facing traffic in data centers.

time to time were observed in public-facing data centers [30].
Last, to avoid congestion and optimize bandwidth usage, traffic
engineering (TE) is often adopted with SDN techniques to split
and direct traffic among multiple paths. Besides the signal
propagation delay indicated in §II-A, the TE controller makes
a centralized decision based on collective observations, which
tends to be outdated for ephemeral public-facing flows. For the
same reason, TE leaves data plane optimization opportunities,
e.g., flow scheduling, which can further optimize network
performance. In fact, the other motivation is to leverage
the ignored application consciousness to gain accurate traffic
knowledge rather than blindly infer it.

C. Multi-Tier Load Balancers

Independent from diverse network topology, let us view
the DCN from the perspective of multi-tier load balancers
(LBs). In order to serve massive requests, data center providers
employ a multi-tier structure of load balancers, as shown in
Figure 3, to split the huge traffic around the world [31], [32].

Under this structure, the 3rd tier Layer 7 (L7) LBs are the
end hosts providing web services and terminating connec-
tions. These L7-LBs are identified through Direct IPs (DIPs).
However, these DIPs are internal IP addresses and hence are
unrecognizable to the outside networks. In contrast, virtual IPs
(VIPs) are public IP addresses announced to the DNS. A web
service is identified through one or a set of VIPs, and it can
also be hosted on one or many L7-LBs, i.e., multiple DIPs.
This decoupled design of VIP and DIP benefits cloud tenants
with the flexibility to configure their services.

The 1st tier load balancers are data center gateways perform-
ing Equal-Cost Multi-Path (ECMP) load balancing to forward
incoming packets from the Internet to the next hops. While
the 1st tier load balancer is responsible for assigning the packet
to one of the 2nd tier Layer 4 (L4) LBs that recognizes this
VIP. It is the L4-LB’s responsibility to assign the packet to a
specific L7-LB by translating this VIP to a DIP of that L7-
LB. Either the serving, 1st tier or 2nd tier, load balancers may
vary for different incoming packets of the same connection,
but these packets have to terminate on the same 3rd tier L7-LB,
i.e., per-connection consistency (PCC). Otherwise, a different
L7-LB cannot recognize the packet and respond properly.

L4-LBs can be categorized as load-agnostic or load-aware.
Load-agnostic balancers, like round-robin and hash-based sys-
tems, perform inconsistently, especially during off-peak peri-
ods, as they do not use load information [33]. In contrast, load-
aware balancers (both statefule [31], [34] and stateless [35],

QUIC Header

Src Network
ID (64)

IPv6 Header Fields Before
Addresses (64)

Dst Network
ID (64)

Dst Interface
ID (64)

UDP Header

Application Payload

Src Interface
ID (64)

SID

RPT

Other TCP Options

Application Payload

OP
(16)

TCP Mandatory Fields (160)

IP Header

TSVal (32) TSEcr (32)

Fig. 4. Accommodations of CLOUDCOOKIE in Internet protocol headers.

[36]) measure load distribution to make informed assignments.
However, stateful variants struggle with scalability, and neither
type meets the ideal L4-LB properties (§IV-B).

D. Flow Packet Scheduling

Data centers handling public-facing flows face a unique
challenge due to the heavy-tailed distribution of flow sizes [1],
where a minority of long flows account for most of the traffic,
while the majority are shorter flows. Implementing the optimal
SRPT flow scheduling is, however, NP-hard. Achieving near-
optimal average FCT in this context has seen advances through
flow scheduling on both switches [4], [10], [37] and end-
hosts [15], [16]. The effective deployment of SRPT flow
scheduling in public-facing data centers is challenging due
to the difficulty in obtaining and exchanging necessary flow
knowledge, e.g., RPT, as explained in §II-B and §II-A.

III. CLOUDCOOKIE DESIGN

We view CLOUDCOOKIE as the signal carrier that estab-
lishes a synchronized in-bound communication channel for
optimization signals to piggyback on public-facing traffic.

Given this, our first decision is to position CLOUDCOOKIE
within the transport and network layers, as opposed to the
application layer [38], stemming from the favorable tradeoff
between visibility and expressiveness. Since CLOUDCOOKIE’s
is applied to public-facing traffic where client-side modifi-
cations are not feasible, the key idea is to ensure bidirec-
tional presence by leveraging the inherent automatic echo in
widely-deployed Internet protocols. Ultimately, we discover
two implementations for CLOUDCOOKIE: (1) in QUIC/IPv6
networks, and (2) in TCP networks. Figure 4 illustrates the
accommodation of CLOUDCOOKIE in both scenarios.

CLOUDCOOKIE, in its QUIC/IPv6 implementation, lever-
ages the composite features of both protocols. Initially, we
utilize a key aspect of QUIC, an emerging transport layer
protocol initially developed by Google and standardized by the
Internet Engineering Task Force (IETF) [39], [40], and founda-
tional to HTTP/3 [25]. QUIC’s unique Connection IDs, as
a set of identifiers, decouples a connection from the traditional
5-tuple. Originally designed for connection migration when
client-side IP addresses change, we repurpose this feature
at the server-side [41] by encoding CLOUDCOOKIE within
L7-LB’s IPv6 addresses. Meanwhile, we harness a feature

of IPv6: An Internet device commonly receives a /64 sub-
net [42], bifurcating the IPv6 address into Network ID and
Interface ID [42]–[44]. While Network ID is used for
routing, the whole range of Interface IDs for identifying
interfaces are available on host [45]. Thus, with QUIC as the
transport layer protocol, CLOUDCOOKIE can be encoded into
Interface ID, utilizing the 64 least-significant bits (LSB)
of the IPv6 address space. The automatic echo feature is en-
sured via the IP address swap. CLOUDCOOKIE is embedded in
the Src Interface ID for server-originated packets and
in the Dst Interface ID for client-originated packets.
CLOUDCOOKIE in QUIC/IPv6 networks provides a substantial
64 bit coding space for various optimization signals.

Inspired by Cheetah, an L4-LB that utilizes TCP Times-
tamps for flow assignment memory [35], CLOUDCOOKIE, in
its TCP implementation, expands the use of TCP Timestamps
for versatile optimization signals. TCP Timestamps is a TCP
option including two equal-size parts: TSVal and TSEcr,
where either one is 32 bit long. TCP Timestamps is orig-
inally designed for round-trip measurement of retransmitted
packets and the Protect Against Wrapped Sequences (PAWS)
mechanism [46], [47]. TCP Timestamps also possess the
automatic echo feature. Either connection peer receiving a
packet with TCP Timestamps will copy the TSVal value to
the TSEcr field of its upcoming departure packets, and set
the TSVal to be an independent value of its own interest.
Specifically, once CLOUDCOOKIE is injected into TSVal of
packets for a downstream public-facing flow, the subsequent
upstream packets within the same connection will observe
CLOUDCOOKIE in their TSEcr fields. Thus, the bidirectional
visibility of CLOUDCOOKIE is guaranteed. Following Chee-
tah’s practice to preserve the original functionality of TCP
Timestamps [35], CLOUDCOOKIE conservatively occupies the
16 most significant bits (MSB) of TSVal or TSEcr so that
the manipulation of CLOUDCOOKIE can be reversed at the
server-side. In comparison to CLOUDCOOKIE in QUIC/IPv6
networks, CLOUDCOOKIE in TCP networks works with both
IPv4 and IPv6, but has a more constrained space forcing a
lower resolution of piggybacked signals.

While CLOUDCOOKIE is a versatile signal carrier de-
coupled from specific DCN optimization techniques, in this
paper, we choose load-aware load balancing and SRPT flow
scheduling. Therefore, CLOUDCOOKIE encodes SID for flow
assignment, RPT for flow scheduling, and two load metrics–
the active flow number (NAF) and the future flow estimation
(ˆNFF)–for updating CCLB7 (server) loads on CCLB4, as the
scheme shown in Figure 4. Furthermore, we advise the DCN
authority shield CLOUDCOOKIE with cryptographic tools,
e.g., AES. It is noteworthy that only CLOUDCOOKIE, rather
than the whole packet, should be encrypted. Encrypting or
decrypting a maximum 64-bit string of AES-128 can be in
line rate on programmable switches [48]. Encrypting can not
only protect CLOUDCOOKIE against malicious modification
and forgery, but also help early filter out invalid traffic.

IV. CLOUDCOOKIE IN ACTION

The lifecycle of CLOUDCOOKIE starts with CCLB7, which
acts as the signal producer integrating application layer
knowledge into CLOUDCOOKIE. DCN middleboxes, including
CCLB4 and the scheduler-on switch, serves as the signal
consumers, performing foresight load balancing and SRPT
flow packet scheduling based on this knowledge.

A. CCLB7: Signal Producer

The key philosophy of CCLB7 is to extend any state-of-
the-art L7-LB to integrate application awareness into CLOUD-
COOKIE and thereby optimize public-facing flows. Instead of
building from scratch, we patch a regular L7-LB with two
additional roles to make it an optimization signal producer:

• Signal collector: collecte flow knowledge and measure
the L7-LB’s own load.

• Signal feeder: encode optimization signals into CLOUD-
COOKIE and inject it in public-facing flows’ packets.

As outlined in §III, CCLB7 plays a crucial role in generating
RPT and two types of loads (NAF and ˆNFF) for SRPT flow
scheduling and load-aware load balancing. To illustrate its
functionality, we expand upon the design of CCLB7 within
TCP networks, which operates similarly to its counterpart
in QUIC/IPv6 networks. The formula for RPT is given by
RPT = flow_size−bytes_sent

throughput . The initial step involves ac-
quiring bytes_sent, conveniently available in the kernel
via struct tcp_sock. tcp_sock, the internal structure
managing TCP connection states, is extended with a new
field acc_flow_size, allowing the application layer to
report the flow size. Given the common practice of connection
reuse, where a single connection may handle multiple data
flows, this field is designed for accumulative updates. The
next component involves the application layer, specifically
an L7-LB, processing a new request to determine the flow
size. Fortunately, the flow size for most web traffic is already
known. Preferably, the flow size can be extracted directly
from the request. For static object requests, the flow size can
be obtained from associated metadata, a method particularly
efficient for high-volume transmissions, such as on-demand
video streaming, where a video is sent in chunks. For dynamic
content requests, where the response size is not predetermined,
the flow size can be determined after the response composition
and before initiating the send() system call to transfer the
response to the socket buffer. To accommodate flow size
reporting in both scenarios, the default send() is replaced
with send_cc(), which wraps the original send() call
and updates acc_flow_size. There are scenarios, where
the flow size is unknown, such as live streaming. Still,
acc_flow_size keeps growing resulting in a non-small
flow size, and hence maintains the flow’s low priority all the
time as expected. The final component, real-time connection
throughput, presents significant challenges. In our study, we
adopt a methodology similar to that of previous research [4],
[10], [37], which involves assuming a constant bandwidth.
This approach has proven to be effective in our evaluations.

70.4%
88.8%

100.0%

352 92 56

Non-FIN Close FIN Close Unavailable

Fig. 5. A measurement over Alexa top 500 websites shows the diversity and
uncertainty of TCP connection terminations.

The other optimization signal in CCLB7 is its own loads.
In addition to the current load number (NAF), we propose
estimating future flows (ˆNFF) to maximize the use of flow
knowledge. CCLB7 utilizes two global counters for this pur-
pose. A new flow increments counter (NAF) upon invoking
send_cc(). If the flow size surpasses a predefined “ahead-
looking” threshold, indicating its likelihood of persisting in the
near future, counter (ˆNFF) is also incremented. Conversely,
when the remaining bytes (flow_size−bytes_sent) fall below
this threshold, the counter (ˆNFF) is decremented. Similarly,
counter(NAF) is decremented once the remaining bytes reach
zero. It is important to note that these increment/decrement
operations are at the flow level. In cases of multiple requests
reusing the same connection (in HTTP/1.1+) or server-pushes
(in HTTP/2+), both counters react accordingly.

Offloading challenging tasks of flow and load measurements
from DCN-controlled middleboxes to CCLB7, paradoxically,
adds minimal overhead, as all extended operations have O(1)
complexity. These signals are then fed into CLOUDCOOKIE
for use by stateless DCN-controlled middleboxes to execute
relevant optimizations.

B. Middleboxes: Signal Consumers

To fully harness the potential of CLOUDCOOKIE’s carried
signals, we have engineered DCN-controlled middleboxes
tailored for load-aware load balancing and SRPT flow schedul-
ing. This includes the creation of CCLB4, which utilizes the
loads reported from CLOUDCOOKIE, and the porting of a
state-of-the-art flow scheduler, AIFO [10], to public-facing
DCNs by supporting CLOUDCOOKIE. This subsection elabo-
rates on the complete end-to-end lifecycle of CLOUDCOOKIE
and illustrates how DCN-controlled middleboxes utilize it to
optimize public-facing traffic.

a) Cheetah’s Teachings: Shaping the Ideal Load Balanc-
ing: CCLB4 draws inspiration from Cheetah [35] by using
packet headers to store flow assignments, thereby imple-
menting a stateless L4-LB that ensures PCC. Cheetah has
two variants: CheetahRR for round-robin and CheetahLL for
least-loaded load balancing. However, even CheetahLL, which
considers L7-LB loads in flow assignments, exhibits inherent
design flaws. First, CheetahLL independently measures loads,
leading to biased observations. This is due to its method of
counting active flows, incrementing or decrementing based
on SYN or FIN packets, which does not reliably indicate
connection terminations in real-world scenarios. Our analysis
of Alexa top-ranking websites [49] revealed that less than 20%
use FIN for graceful connection closure, as Figure 5 shows.

0 2 4 6 8 10 12

Variance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

2 L4-LBs
4 L4-LBs
6 L4-LBs
8 L4-LBs
Local Perspective
Global Perspective

Fig. 6. CDF of cross-L7-LB variance in flow assignments over time, from
L4-LBs’ local and global perspectives.

Second, even with accurate active flow counting, the locally
measured loads are skewed compared to the global distribu-
tion. To illustrate this, we simulate the distribution of 10,000
flows, each with sizes sampled uniformly, from N ∈ [2, 4, 6, 8]
L4-LBs to 16 L7-LBs from both local and global perspectives.
The results, shown in Figure 6, indicate higher variance in
assignments from the local perspective, worsening as the
number of L4-LBs, i.e., N , increases.

Last, even with accurate measurements of global load distri-
butions, optimizing public-facing flows remains inadequate if
flow awareness is ignored. As discussed in §II, public-facing
flows exhibit high uncertainty. A representative uncertainty is
the heavy-tailed distribution in flow sizes [1], [28], necessitat-
ing future load estimation to rectify flow assignment decisions.
For instance, consider assigning an incoming flow between
two L7-LBs, A with 15 active flows and B with 20. CheetahLL

would assign the flow to A. However, if 5 and 15 flows
terminate on A and B respectively within the next second,
the load distribution will reverse. CheetahLL does not account
for flow awareness and leads to suboptimal flow assignments.

From the lessons of Cheetah’s design, we derive that the
ideal L4-LB should encompass three core properties: pre-
cise measurement, a global perspective, and flow awareness.
CCLB4 is designed to embody these properties by utiliz-
ing the load information reported by each CCLB7 through
CLOUDCOOKIE. First, the loads reported by CCLB7 are
the ground truths. Second, the continuous update of load
information in every packet sent to CCLB4 endows it with
an approximate global perspective. Third, the loads reported
in CLOUDCOOKIE, consisting of NAF and ˆNFF , capture both
the current and future load levels. CCLB4 maintains a set of
maps to link VIPs, SIDs, DIPs, and loads of CCLB7s.

Figure 7 outlines the workflow of DCN-controlled mid-
dleboxes, including CCLB4 and scheduler-on switches, in
response to CLOUDCOOKIE. Depending on CLOUDCOOKIE
content and flow states, the workflow is divided into four
phases: Assigning Phase (Figure 7 (a)): This phase begins
with a client initiating a connection to a VIP obtained from
DNS. Upon receiving the first packet (TCP’s SYN or QUIC’s
Initial) at CCLB4, candidate CCLB7s associated with the
VIP are considered. CCLB4 picks the candidate with the
lowest load score. Score the i-th CCLB7 as:

Score(i) = α×N i
AF + (1− α)× N̂ i

FF (1)

(a) Assigning (d) Reacting (b) Retrieving (c) Insighting

DIP CIP
LRS

DIP CIP
LRS

SID
CIP VIP

SID
CIP DIP

SID
VIP CIP DIP CIP

Req

CIP VIP
SID

DIP CIP
LRS

Pick Server Produce
Optimization
Signals

Update
Loads

Scheduling
Recall assignment

Embed assignment

CIP VIP CIP DIP

Fig. 7. Workflow depicting the production and consumption of CLOUDCOOKIE in DCN-controlled infrastructure. Packets are shown in the scheme of
SrcIP DstIP
 CLOUDCOOKIE . “CIP” refers to the client IP. Solid and dashed arrows indicate packets in upstream and downstream directions.

where α is a weight coefficient to balance the load balancing
sensitivity between the active (N i

AF) and estimated future
(N̂ i

FF) flow numbers. The destination address in the packet is
then changed from VIP to DIP and forwarded to the selected
CCLB7. In the downstream direction, any packet traversing
CCLB4 has its source address changed back from DIP to VIP,
with the corresponding SID embedded in CLOUDCOOKIE.
Retrieving Phase (Figure 7 (b)): This phase happens for every
subsequent upstream packet passing CCLB4. SIDs in CLOUD-
COOKIE are used to retrieve the previous assignment, ensuring
consistent delivery to the same CCLB7. Insighting Phase
(Figure 7 (c)): Upon each complete request delivery, CCLB7

collects flow knowledge, such as RPT, during request parsing
or response composition. This flow knowledge, combined with
load information, is packed into CLOUDCOOKIE. Reacting
Phase (Figure 7 (d)): In the downstream path, CCLB4 updates
the load information, while scheduler-on switches, even in
client-side eyeball networks, utilize SRPT flow scheduling for
proactive bandwidth allocation optimization.

CLOUDCOOKIE imparts stateful capabilities to DCN-
controlled middleboxes while allowing them to remain inher-
ently stateless. This aspect is critical for enabling data cen-
ter advances without compromising scalability. Furthermore,
CLOUDCOOKIE facilitates the synergistic optimization on
public-facing traffic by fusing multiple data center advances.

V. EVALUATION

In the development of CLOUDCOOKIE and its associ-
ated infrastructure, we have executed two Proof-of-Concepts
(PoCs) to validate various facets of our design. The first,
a Functional PoC extending the Linux kernel, demonstrates
CLOUDCOOKIE’s basic viability in standard operating sys-
tems and public-facing traffic. In this PoC, we also evaluate
the overhead associated with integrating CLOUDCOOKIE into
CCLB7. The second, a Performance-Oriented PoC, utilizes a
DPDK-based HTTP suite and L4-LBs implemented on BESS
framework [50]–[52], and a Tofino (P4) switch [53], [54] for
running the flow scheduler, to conduct performance assess-
ments, particularly in high-speed data center environments.
With this implementation, we simulate real-world HTTP traffic
and evaluate the effectiveness of CLOUDCOOKIE’s approach

in 100-Gbps high-speed network settings, thereby demonstrat-
ing its potential to substantially improve network performance.

In this evaluation, we formulate five key questions:
• Does load balancing and flow scheduling have a synergis-

tic impact on network performance, given that they focus
on different aspects of optimization? (§V-A)

• Is stateless CCLB4 able to improve load balancing ef-
fectiveness by integrating load reports from CCLB7 via
CLOUDCOOKIE, compared to its alternatives? (§V-B)

• Is CLOUDCOOKIE able to enable SRPT flow scheduling
for public-facing flows? (§V-C)

• What is the performance of TCP CLOUDCOOKIE and
CCLB4 under different scoring settings? (§V-D)

• What is the cost of introducing CLOUDCOOKIE? (§V-E)
a) Performance-Oriented PoC Testbed: We have the

AIFO [10] flow scheduler deployed on a Tofino switch. Four
physical machines are connected to the switch via 100-GbE
links. Each of these machines has one AMD EPYC™ 7302P
16-core processor at 3.0 GHz with hyper-threading disabled.
Four HTTP clients along with four independent L4-LBs are
deployed on one dedicated machine. Traffic from each HTTP
client will arrive first at its dedicated L4-LB. Then, the routed
packets will be forwarded by the switch to twelve L7-LBs
running at the three remaining machines. The switch-clients
link is the bottleneck link because these clients share the same
link. For performance isolation, we run each HTTP-client-L4-
LB pipeline with dedicated CPU cores and a virtual NIC by
using SR-IOV [55]. 2 Likewise, the other three machines each
run four CCLB7s, where each one is allocated dedicated cores
and its own virtual NIC.

While it may differ from canonical DCN deployments where
client traffic traverses multiple layers of switches, this PoC
testbed abstracts these layers and focuses on the aggregation
point where traffic converges before reaching the L7-LBs. This
setup simulates and optimizes traffic through a single Top-of-
Rack (ToR) switch, modeling a rack-scale network.

b) Experimental Settings: We simulate real-world
public-facing flows from a well-known data center websearch
workload [1], which matches the practice in precedent re-
search [1], [4], [10], [15], [37], [56]. In this heavy-tailed

2In this way, pipelines can run with minimal interference because packets
are switched in hardware on host.

Off

Scheduler

0

1

2

3

4

5
Fl

ow
 C

om
pl

et
io

n
Ti

m
e

(m
s) (a) (0,100KB]: Average

Off

Scheduler

0

20

40

60

80

(b) (0,100KB]: 99th Percentile

Off

Scheduler

25

30

35

40

45
(c) (1MB,∞]: Average

HashLB
CheetahRR
CheetahLL
CCLB4

Fig. 8. Performance of different L4-LBs with or without flow scheduler under high load (0.8) demonstrates the individual and synergistic performance
improvements brought by CLOUDCOOKIE.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Loads

0

1

2

3

4

5

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s) (a) (0,100KB]: Average

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Loads

0

20

40

60

80
(b) (0,100KB]: 99th Percentile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Loads

15

25

35

45
(c) (1MB,∞]: Average

HashLB
CheetahRR
CheetahLL
CCLB4

Fig. 9. Performance of different L4-LBs under varying loads (scheduler disabled) further confirms the CCLB4’s effectiveness. The shaded area indicates the
interquartile range (IQR) of each L4-LB.

workload, the flow size varies from 8 KB to 28 MB and has
a 95th percentile of 4 MB. On each HTTP client, we generate
flow arrival events, i.e., sending GET requests, through the
Poisson process. Client requests are distributed to L7-LBs by
associated L4-LBs. Four L4-LBs are considered in this study:
(1) HashLB, which assigns flows based on the 5-tuple hash
value; (2) CheetahRR, which memorizes flow assignments in
TCP Timestamps and uses round-robin for new assignments;
(3) CheetahLL, a variant of Cheetah that selects the least
loaded CCLB7 based on local measurements for new assign-
ments [35]; and (4) CCLB4, which utilizes CLOUDCOOKIE-
reported loads for flow assignment decisions. The first two are
load-agnostic, while the latter two are load-aware. The target
network loads vary from 0.1 to 0.8. Each experimental setting
involves 10 repetitions, with requests emitted for 10 seconds
in each run, unless otherwise specified. We primarily evaluate
the performance of CLOUDCOOKIE in QUIC/IPv6 networks.
The default weight coefficient α in the CCLB4 score function
(Eq 1) is 0.5 to balance loads NAF and N̂AF equally.

A. Studying The Synergy of Multiple Optimizations
Flow scheduling optimizes bandwidth allocation for net-

work flows in local links, while load balancing distributes
traffic to enhance overall network efficiency. To assess the
synergistic benefits of CLOUDCOOKIE, we concentrate on
high-load scenarios (load=0.8), comparing CCLB4 against
HashLB, CheetahRR, and CheetahLL, with the flow scheduler
either activated or deactivated.

Figure 8 presents the average FCT for short flows (0,
100KB], the 99th percentile FCT for these flows, and the
average FCT for long flows (1MB, ∞]. Without the flow
scheduler, CCLB4 improves performance for both short and

long flows: it achieves a 4-5x reduction in average FCT and
a 10-11x in the 99th percentile FCT for short, the majority,
flows compared to alternatives. For long flows, CCLB4 reduces
the average FCT by up to 12%. After enabling the flow
scheduler, the FCT reductions by CCLB4, for short flows, are
2-3x for the average FCT and 8-12x for the 99th percentile.
The absolute FCTs decrease for all L4-LBs. And, with fully
utilizing CCLB4 and the flow scheduler, the overall improve-
ment in the 99th percentile FCT can reach up to 20x for the
majority flows. This is because the two optimizations target
different optimization aspects. And the improvement from
flow scheduling is consistent with AIFO’s large-scale simula-
tion [10] despite that our RPT is extracted from each request
rather than manually tagged. However, the performance gap
between different L4-LBs narrows. The underlying rationale
is that applying flow packet scheduling can decrease packet
retransmissions and indirectly reduce the overall network load.
In summary, flow packet scheduling and load balancing can
collaboratively enhance the efficiency of public-facing flows.

B. Demonstrating The Effectiveness of CCLB4 Design
From the trailer in §V-A, CCLB4 consistently outperforms

its competitors with or without the flow scheduler under high
loads. Its performance is notably superior in managing both
short and long flow types. We now conduct an ablation study
to further understand CCLB4’s effectiveness.

First, we disable the flow scheduler and compare the four
L4-LBs under varying loads. Results are shown in Figure 9.
Under light traffic load (< 0.6), all L4-LBs demonstrate
comparable service levels. However, for higher load (≥ 0.6),
performance gaps between L4-LBs become increasingly ev-
ident. Across various load levels, the performance ranking

0 80 160 240 320 400

Variance

0.4

0.6

0.8

1.0
C

D
F

HashLB
CheetahRR

CheetahLL

CCLB4

99%

38 291240 342

Fig. 10. The ground-truth cross-L7-LBs confirms the superiority of CCLB4.

0 10 20 30 40

Time (s)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Th
ro

ug
hp

ut
 (M

pp
s)

Flow 0 Flow 1 Flow 2 Flow 3 Flow 4 Flow 5

Fig. 11. Shifts in bandwidth allocation in reaction to rotating RPTs in six
flows, as carried by CLOUDCOOKIE.

remains constant: CCLB4 consistently outperforms all others,
followed by HashLB, and then the two Cheetah variants.

We are taken aback by the underperformance of Cheetah L4-
LBs, especially when compared to HashLB. But this indeed
validates our earlier observation: the Cheetah’s ignorance
discussed in §IV-B. According to Figure 9, we notice that
CheetahLL performs even worse than CheetahRR. This is
understandable: Even though CheetahRR is load-agnostic, it
operates under the assumption that server loads are uniformly
distributed. In contrast, CheetahLL tends to result in more
erroneous flow assignments, because of its biased perspective
based on locally measured server load distributions. CCLB4

adopts a fundamentally different strategy by fully offloading
load measurement to the server, i.e., CCLB7, with updates
facilitated by CLOUDCOOKIE. Notably, CCLB7 is inherently
the most credible source for its own load data.

To further verify the load balancing performance, we set up
Chrony [57] to elevate the time accuracy among machines,
reducing it from several seconds to approximately ten mi-
croseconds. Then we periodically dump real-time active flow
numbers on the twelve CCLB7s and align them to calculate
the variance. Figure 10 is the CDF of the variance collected for
different L4-LBs, further confirming the superiority of CCLB4

in load balancing. In summary, serving CLOUDCOOKIE, state-
less CCLB4 can perform load-aware load balancing from an
approximate global perspective.

C. Validating SRPT Flow Scheduling

In addition to results in §V-A, we design an experiment of
6 flows to verify that CLOUDCOOKIE is effective in enabling
SRPT scheduling for public-facing flows. We conduct an
experiment by bypassing the L4-LB and directly transmitting 6

Off

Scheduler

0.55

0.65

0.75

0.85

0.95

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s) (a) (0,100KB]
Average

Off

Scheduler

3

5

7

9

(b) (0,100KB]
99th Percentile

Off

Scheduler

25

30

35

40

(c) (1MB,∞]
Average

CCLBTCP
4 CCLB4 CCLBCUR

4 CCLBFUT
4

Fig. 12. Performance of CCLB4 variants under high load (0.8).

continuous data flows from a server to a client, operating on a
best-effort basis. Each flow is uniquely identified by an RPT
assigned via CLOUDCOOKIE, which determines its priority.
Initially, the flows, from Flow 0 to Flow 5, are arranged
with RPTs in descending order, corresponding to ascending
priorities. Every 5 seconds, the RPT assignments are rotated.
For instance, after the first rotation, the RPTs are reordered in
descending order as Flow Flow 1 to Flow 5, and Flow 0.

Figure 11 shows the throughput of every flow over time.
Initially, only Flow 3, 4, and 5 grab shares of the bandwidth,
because the CLOUDCOOKIE of them carries the shortest RPTs
in that period. Later, after the first rotation, Flow 3 quickly
handles its bandwidth share to Flow 4, 5 and the newcomer,
Flow 0, due to the RPT reranking. Similar changes apply to
subsequent rotations. Besides, during each stable period, we
can observe the flow throughputs are divided into 3 tiers: the
two flows with the shortest RPT take the maximum through-
put, followed by the third shortest RPT flow. The remaining
flows do not get any bandwidth share. CLOUDCOOKIE is
hereby proved to be an effective and flexible signal carrier
to enable SRPT flow packet scheduling.

D. More Experiments on CCLB4 Variants

CLOUDCOOKIE working in TCP networks and carrying
lower-resolution signals creates the CCLBTCP

4 variant. There
are two additional variants: CCLBCUR

4 and CCLBFUT
4 , due

to different flow assignment flavors: only from the number of
current active flows (α = 1, Score(i) = N i

AF), and only from
the estimation of future flows (α = 0, Score(i) = N̂ i

FF).
Figure 12 shows the comparative results of these variants

alongside the default CCLB4. The initial comparison focuses
on CCLB4 targeting QUIC/IPv6 networks versus CCLBTCP

4 .
Although CCLBTCP

4 shows an 8% increase in average FCT
and a 50% increase in the 99th percentile FCT compared to
CCLB4, its performance still surpasses that of CCLB4 when
the flow scheduler is disabled. With a properly designed coding
pattern as in Figure 4 (b), CCLBTCP

4 can still achieve compet-
itive performance. The second comparison evaluates various
flow assignment flavors, with the flow scheduler disabled. As
anticipated, CCLB4, which accounts for both the current num-
ber of active flows and future flow estimations, outperforms
CCLBCUR

4 and CCLBFUT
4 , each of which considers only one

of these aspects. These results highlight the practicality of our

TABLE I
CPU UTILIZATION OF CCLB7 FUNCTIONAL POC

Idle Vanilla
L7-LB CCLB7

Mean User 0.4% 6.1% 6.6%
Kernel 0.4% 15.7% 16.6%

Median User 0.0% 6.3% 6.6%
Kernel 0.0% 15.8% 16.9%

P99 User 4.0% 7.7% 8.4%
Kernel 2.4% 16.7% 18.4%

heuristic approach in estimating future flows from current flow
RPTs, thereby leveraging application layer flow awareness to
enhance flow optimization.

E. Quantifying CloudCookie’s Overheads

While CLOUDCOOKIE offloading flow insighting and load
measurement to CCLB7 from DCN middleboxes introduces
additional responsibilities, the overhead remains minimal, as
detailed in §IV-A, with all operations being of constant
complexity. This subsection quantifies such overhead in both
Performance-Oriented and Functional PoCs.

We measure the CPU cycles required for inferring RPT and
loads per outgoing packet: load retrieval consistently requires
30 cycles, being a simple memory read, while RPT compu-
tation varies between 30 (median) and 630 (99th percentile)
cycles. On a 3.0 GHz processor, this translates to a delay of
0.22 µs per packet at the tail, a negligible amount compared
to the typical RTT of public-facing flows, e.g., Facebook’s
reported median RTT of 39 ms [58].

Additionally, we evaluate the overhead of CCLB7 in its
Functional PoC, comparing it to a vanilla L7-LB without
CCLB7 functionality. The results in Table I show a 1.4%
increase in total CPU utilization for both mean and median,
and a 2.4% increase for the 99th percentile. This modest rise
is negligible compared to the L7-LB’s core function of web
service provision, accounting for approximately 20% CPU
utilization. The alignment of results from both Functional and
Performance-Oriented PoCs validates the minimal overheads
of handling public-facing traffic with CLOUDCOOKIE.

Further, a line of research has explored performance opti-
mizations in software and hardware for network applications
[59]–[63] and can be utilized to enhance the performance of
CLOUDCOOKIE’s implementation. We left it for future work.

VI. DISCUSSION

a) More Applications: We have explored CLOUD-
COOKIE’s use for flow scheduling and load balancing by
utilizing RPT and load information due to their quantifiable
nature. CLOUDCOOKIE’s versatility allows it to be applid in a
variety of applications. Here are some examples: (1) Network
telemetry is crucial for detecting and predicting network
anomalies, where CLOUDCOOKIE can be a drop-in replace-
ment for existing telemetry systems. It eliminates the need for
additional control traffic, such as required by NetFlow [64],
IPFIX [65], or tunneling protocol used in INT [66]. (2)

Decryption [67] and DPI are required for traffic auditing but
can expose sensitive personal data and compromise privacy.
CLOUDCOOKIE provides a solution by tagging sensitive traffic
with multidimensional security signals for auditing purposes,
with no need to inspect the content. (3) Quality of experience
(QoE) or special traffic treatments are often deployed for better
user experience [38]. CLOUDCOOKIE enables fine-grained
traffic control, requiring no client modifications.

b) QUIC/IPv6 Consideration: QUIC’s connection mi-
gration is flexible but is not free, as it requires extra traffic and
computation for path validation. Thus, we suggest an asym-
metric CLOUDCOOKIE pattern, where dynamic signals, e.g.,
RPT and loads, are masked out when downstream traffic leaves
the DCN, and only static signals, e.g., SID, are preserved in
upstream traffic. Moreover, QUIC forbids connection migra-
tion during handshaking. For this reason, CLOUDCOOKIE will
not be set during this period. An ephemeral connection table
is required on CCLB4 to ensure PCC.

c) Limitations: CLOUDCOOKIE does not support
QUIC/IPv4 networks, as it requires the composite features
of both protocols. Neither IPv4 addresses nor QUIC
Connection IDs can encode CLOUDCOOKIE due
to address scarcity, and privacy and security concerns,
respectively [40]. Nevertheless, this limitation only affects a
small proportion of Internet traffic (4.6%, estimated based on
current usage of IPv4 and QUIC [68], [69]), preventing it from
benefiting from the optimizations brought by CLOUDCOOKIE.

VII. CONCLUSION

Endorsed by the expanding footprints and increasing con-
trollability of data center authorities, we propose CLOUD-
COOKIE, designed to carry flow-optimization signals within
Internet protocol headers. This innovation enables private data
center advances in public-facing data centers. We develop
a system comprising CCLB7, CCLB4, and the scheduler-on
switch, as the producer and consumers of flow-optimization
signals. CCLB7 gathers application layer insights, adding cred-
ible flow scheduling and load balancing signals to CLOUD-
COOKIE. Signals are then consumed by stateless CCLB4 and
the scheduler-on switch to achieve better performance for
public-facing traffic. Additionally, our design incurs minimal
overhead and requires zero client-side modification.

Our evaluation reveals that the combining CCLB4 with the
SRPT flow scheduler further reduces the 99th percentile FCT
of the majority flows from 2-11x to 20x, compared to enabling
either one individually. Also, CCLB4, with an accurate, global
perspective and future visions empowered by CLOUDCOOKIE,
consistently outperforms its counterparts, while maintaining its
stateless nature, even in TCP networks with low-resolution
signals. While our exploration of CLOUDCOOKIE is in its
nascent stages, we remain open to the future potential of this
versatile signal carrier, which holds promise for integrating
more data center advances into public-facing traffic.

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
Proceedings of the ACM SIGCOMM 2010 Conference, 2010, pp. 63–74.

[2] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “HPCC: High precision
congestion control,” in Proceedings of the ACM Special Interest Group
on Data Communication. Association for Computing Machinery, 2019,
pp. 44–58.

[3] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible data
center network,” in Proceedings of the ACM SIGCOMM 2009 conference
on Data communication, 2009, pp. 51–62.

[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp.
435–446, 2013.

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[6] P. Gigis, M. Calder, L. Manassakis, G. Nomikos, V. Kotronis, X. Dim-
itropoulos, E. Katz-Bassett, and G. Smaragdakis, “Seven years in
the life of Hypergiants’ off-nets,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, ser. SIGCOMM ’21. New York, NY,
USA: Association for Computing Machinery, Aug. 2021, pp. 516–533.

[7] T. Arnold, J. He, W. Jiang, M. Calder, I. Cunha, V. Giotsas, and
E. Katz-Bassett, “Cloud Provider Connectivity in the Flat Internet,” in
Proceedings of the ACM Internet Measurement Conference, ser. IMC
’20. New York, NY, USA: Association for Computing Machinery, Oct.
2020, pp. 230–246.

[8] E. Pujol, I. Poese, J. Zerwas, G. Smaragdakis, and A. Feldmann,
“Steering hyper-giants’ traffic at scale,” in Proceedings of the 15th
International Conference on Emerging Networking Experiments And
Technologies, 2019, pp. 82–95.

[9] Y.-C. Chiu, B. Schlinker, A. B. Radhakrishnan, E. Katz-Bassett, and
R. Govindan, “Are we one hop away from a better internet?” in
Proceedings of the 2015 Internet Measurement Conference, 2015, pp.
523–529.

[10] Z. Yu, C. Hu, J. Wu, X. Sun, V. Braverman, M. Chowdhury, Z. Liu,
and X. Jin, “Programmable packet scheduling with a single queue,” in
Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 2021, pp.
179–193.

[11] S. Floyd, D. K. K. Ramakrishnan, and D. L. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” RFC 3168, Sep. 2001.

[12] D. B. Grossman, “New Terminology and Clarifications for Diffserv,”
RFC 3260, Apr. 2002.

[13] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in 2011 Proceedings IEEE INFOCOM. IEEE, 2011, pp. 1629–1637.

[14] A. Custura, G. Fairhurst, and R. Secchi, “Considerations for Assigning a
New Recommended Differentiated Services Code Point (DSCP),” RFC
9435, Jul. 2023.

[15] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “phost: Distributed near-optimal datacenter transport over
commodity network fabric,” in Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies, 2015, pp. 1–12.

[16] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A
receiver-driven low-latency transport protocol using network priorities,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, 2018, pp. 221–235.

[17] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,
M. Hines, T. Kim, A. Narayanan, A. Jain et al., “Taking the edge off
with espresso: Scale, reliability and programmability for global internet
peering,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, 2017, pp. 432–445.

[18] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha,
I. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng, “Engineering
egress with edge fabric: Steering oceans of content to the world,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, 2017, pp. 418–431.

[19] T. Li, D. Farinacci, S. P. Hanks, D. Meyer, and P. S. Traina, “Generic
Routing Encapsulation (GRE),” RFC 2784, Mar. 2000.

[20] J. Gross, I. Ganga, and T. Sridhar, “Geneve: Generic Network Virtual-
ization Encapsulation,” RFC 8926, Nov. 2020.

[21] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 127–138, 2012.

[22] Google Transparency Report, “HTTPS encryption on the web,” Avail-
able: https://transparencyreport.google.com/https/overview, (Accessed
on 09/01/2024).

[23] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste, “The cost of the" s"
in https,” in Proceedings of the 10th ACM International on Conference
on emerging Networking Experiments and Technologies, 2014, pp. 133–
140.

[24] Chromium, “HSTS Preloaded list,” Available: https://cs.chromium.org/
chromium/src/net/http/transport_security_state_static.json, (Accessed on
09/01/2024).

[25] M. Bishop, “HTTP/3,” RFC 9114, Jun. 2022.
[26] I. A. Rai, G. Urvoy-Keller, M. K. Vernon, and E. W. Biersack, “Perfor-

mance analysis of las-based scheduling disciplines in a packet switched
network,” ACM SIGMETRICS Performance Evaluation Review, vol. 32,
no. 1, pp. 106–117, 2004.

[27] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
Agnostic flow scheduling for commodity data centers,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). Oakland, CA: USENIX Association, May 2015, pp. 455–468.

[28] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 2010, pp. 267–280.

[29] V. Ðukić, S. A. Jyothi, B. Karlas, M. Owaida, C. Zhang, and A. Singla,
“Is advance knowledge of flow sizes a plausible assumption?” in 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). Boston, MA: USENIX Association, Feb. 2019, pp. 565–
580.

[30] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen, L. Wan,
L. Liu, Z. Ding et al., “Tiara: A scalable and efficient hardware
acceleration architecture for stateful layer-4 load balancing,” in 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), 2022, pp. 1345–1358.

[31] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu et al., “Ananta: Cloud scale load
balancing,” ACM SIGCOMM Computer Communication Review, vol. 43,
no. 4, pp. 207–218, 2013.

[32] M. Fayed, L. Bauer, V. Giotsas, S. Kerola, M. Majkowski, P. Odintsov,
J. Sitnicki, T. Chung, D. Levin, A. Mislove et al., “The ties that un-
bind: Decoupling ip from web services and sockets for robust addressing
agility at cdn-scale,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021, pp. 433–446.

[33] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer,” in 13th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16). Santa Clara, CA: USENIX Association, Mar. 2016, pp.
523–535.

[34] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, 2017, pp. 15–28.

[35] T. Barbette, C. Tang, H. Yao, D. Kostić, G. Q. M. Jr., P. Papadim-
itratos, and M. Chiesa, “A High-Speed Load-Balancer design with
guaranteed Per-Connection-Consistency,” in 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp. 667–683.

[36] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless datacenter
load-balancing with beamer,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). Renton, WA: USENIX
Association, Apr. 2018, pp. 125–139.

[37] A. G. Alcoz, A. Dietmüller, and L. Vanbever, “SP-PIFO: Approximat-
ing Push-In First-Out behaviors using Strict-Priority queues,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). Santa Clara, CA: USENIX Association, Feb. 2020, pp.
59–76.

[38] Y. Yiakoumis, S. Katti, and N. McKeown, “Neutral net neutrality,” in
Proceedings of the 2016 ACM SIGCOMM Conference, 2016, pp. 483–
496.

https://transparencyreport.google.com/https/overview
https://cs.chromium.org/chromium/src/net/http/transport_security_state_static.json
https://cs.chromium.org/chromium/src/net/http/transport_security_state_static.json

[39] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings of the
conference of the ACM special interest group on data communication,
2017, pp. 183–196.

[40] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” RFC 9000, May 2021.

[41] C. Puliafito, L. Conforti, A. Virdis, and E. Mingozzi, “Server-side quic
connection migration to support microservice deployment at the edge,”
Pervasive and mobile computing, vol. 83, p. 101580, 2022.

[42] IAB, “IAB/IESG Recommendations on IPv6 Address Allocations to
Sites,” RFC 3177, Sep. 2001.

[43] D. S. E. Deering and B. Hinden, “IP Version 6 Addressing Architecture,”
RFC 4291, Feb. 2006.

[44] E. Nordmark, D. S. E. Deering, and B. Hinden, “IPv6 Global Unicast
Address Format,” RFC 3587, Aug. 2003.

[45] M. Żenczykowski and The Linux Kernel Organization, “ipv6: Implement
Any-IP support for IPv6 - Linux Kernel,” Available: https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git, Sep. 2010, (Commit ID:
ab79ad14a2d51e95f0ac3cef7cd116a57089ba82).

[46] D. A. Borman, R. T. Braden, and V. Jacobson, “TCP Extensions for
High Performance,” RFC 1323, May 1992.

[47] D. Borman, R. T. Braden, V. Jacobson, and R. Scheffenegger, “TCP
Extensions for High Performance,” RFC 7323, Sep. 2014.

[48] X. Chen, “Implementing aes encryption on programmable switches via
scrambled lookup tables,” in Proceedings of the Workshop on Secure
Programmable Network Infrastructure, 2020, pp. 8–14.

[49] Alexa, “The top 500 sites on the web,” Available: https://www.alexa.
com/topsites, (Accessed on 04/22/2022).

[50] Linux Foundation, “Data Plane Development Kit (DPDK),” Available:
http://www.dpdk.org, (Accessed on 09/01/2024).

[51] NetSys, “Berkeley Extensible Software Switch (BESS),” Available:
https://github.com/NetSys/bess, (Accessed on 11/01/2023).

[52] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“Softnic: A software nic to augment hardware,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155,
May 2015.

[53] Intel, “The Intel Tofino series of P4-programmable Ethernet switch
ASICs,” Available: https://www.intel.com/content/www/us/en/products/
details/network-io/intelligent-fabric-processors/tofino.html, (Accessed
on 11/01/2023).

[54] “P4 Programming Language,” Available: https://p4.org/, (Accessed on
10/10/2022).

[55] Intel LAN Access Division, “PCI-SIG SR-IOV Primer: An Introduction
to SR-IOV Technology (Revision 2.5),” Jan. 2011.

[56] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
pass: A centralized" zero-queue" datacenter network,” in Proceedings of
the 2014 ACM conference on SIGCOMM, 2014, pp. 307–318.

[57] M. Lichvar and Red Hat, “The Chrony Project,” Available: https:
//chrony-project.org/, (Accessed on 11/01/2023).

[58] B. Schlinker, I. Cunha, Y.-C. Chiu, S. Sundaresan, and E. Katz-Bassett,
“Internet performance from facebook’s edge,” in Proceedings of the
Internet Measurement Conference, 2019, pp. 179–194.

[59] J. Wang, S. Gupta, M. A. M. Vieira, B. Raghavan, and R. Govindan,
“Scheduling network function chains under sub-millisecond latency
slos,” arXiv preprint, 2023.

[60] J. Wang, T. Lévai, Z. Li, M. A. M. Vieira, R. Govindan, and B. Ragha-
van, “Quadrant: A cloud-deployable nf virtualization platform,” in
Proceedings of the 13th Symposium on Cloud Computing, ser. SoCC
’22. New York, NY, USA: Association for Computing Machinery,
2022, pp. 493–509.

[61] J. Yen, J. Wang, S. Supittayapornpong, M. A. M. Vieira, R. Govindan,
and B. Raghavan, “Meeting slos in cross-platform nfv,” in Proceedings
of the 16th International Conference on Emerging Networking EXper-
iments and Technologies, ser. CoNEXT ’20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 509–523.

[62] J. Wang, “Performant, scalable, and efficient deployment of network
function virtualization,” Ph.D. dissertation, University of Southern Cal-
ifornia, 2023.

[63] B. Raghavan, R. Govindan, Z. Li, and J. Wang, “Methods and systems
for efficient and secure network function execution,” Jun. 2023, uS
Patent App. 18/082,873.

[64] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954, Oct. 2004.

[65] P. Aitken, B. Claise, and B. Trammell, “Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Infor-
mation,” RFC 7011, Sep. 2013.

[66] The P4.org Applications Working Group, “In-band Network Telemetry
(INT) Dataplane Specification (Version 2.1),” The P4.org Applications
Working Group, Tech. Rep., Nov. 2020.

[67] Palo Alto Networks, “SSL Forward Proxy,” Available:
https://docs.paloaltonetworks.com/pan-os/11-1/pan-os-admin/
decryption/decryption-concepts/ssl-forward-proxy, Jul. 2024, (Accessed
on 09/05/2024).

[68] Google, “IPv6 Statistics,” Available: https://www.google.com/intl/en/
ipv6/statistics.html, Sep. 2024, (Accessed on 09/01/2024).

[69] W3Techs, “Usage Statistics of QUIC for Websites,” Available: https:
//w3techs.com/technologies/details/ce-quic, Sep. 2024, (Accessed on
09/01/2024).

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://www.alexa.com/topsites
https://www.alexa.com/topsites
http://www.dpdk.org
https://github.com/NetSys/bess
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://p4.org/
https://chrony-project.org/
https://chrony-project.org/
https://docs.paloaltonetworks.com/pan-os/11-1/pan-os-admin/decryption/decryption-concepts/ssl-forward-proxy
https://docs.paloaltonetworks.com/pan-os/11-1/pan-os-admin/decryption/decryption-concepts/ssl-forward-proxy
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-quic

	Introduction
	Background and Related Work
	Challenges in Signal Exchanges
	Challenges in Gaining Traffic Knowledge
	 Multi-Tier Load Balancers
	Flow Packet Scheduling

	CloudCookie Design
	CloudCookie In Action
	CCLB7: Signal Producer
	Middleboxes: Signal Consumers

	Evaluation
	Studying The Synergy of Multiple Optimizations
	Demonstrating The Effectiveness of CCLB4 Design
	Validating SRPT Flow Scheduling
	More Experiments on CCLB4 Variants
	Quantifying CloudCookie's Overheads

	Discussion
	Conclusion
	References

