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Abstract

In recent years, we have witnessed a growing trend of con-
tent hyper-giants deploying server infrastructure and ser-
vices close to end-users, in “eyeball” networks. Still, one of
the services that remained largely una�ected by this trend is
online streaming analytics. This is despite the fact that most
of the “big data” is received in real time and is most valuable
at the time of arrival. The inability to process requests at
the network edge is caused by a common setting where user
pro�les, necessary for analytics, are stored deep in the data
center back-ends. This setting also carries privacy concerns
as such user pro�les are individually identi�able, yet the
users are almost blind to what data is associated with their
identities and how the data is analyzed. In this paper, we re-
vise this arrangement, and plant encrypted semantic cookies

at the user end. Without altering any of the existing proto-
cols, this enables capturing and analytically pre-processing
user requests soon after they are generated, at edge ISPs
or content providers’ o�-nets. In addition, it ensures user
anonymity perseverance during the analytics. We design
and implement Snatch, a QUIC-based streaming analytics
prototype, and demonstrate that it speeds up user analytics
by up to 200x, and by 10-30x in the common case.

CCS Concepts: • Networks → Network services; Public
Internet; Cross-layer protocols; • Security and privacy;
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1 Introduction

The ability to extract user analytics in a timely manner, i.e.,
as quickly as possible, is of critical importance for numerous
online applications [68]. An ad provider can more promptly
adjust its ad layout to capture more clicks based on the user
analytics extracted over short time scales. Many online ser-
vices are utilizing machine learning systems to “learn on the
�y” and either adjust content presentation (e.g., return search
results tailored towards a given user pro�le) or optimize
system performance. Still, such machine learning systems
fundamentally depend on analytics “triggers,” which again, if
available sooner or over short timescales, are more valuable.
Currently, the streaming analytics “machinery” typically

resides in data centers. On the one hand, the analytics servers
are fed by streams from web server clusters, which typically
serve tens of thousands of clicks arriving on average every
second. On the other hand, given that user web requests
alone are semantic-oblivious, i.e., carrying no direct informa-
tion about users, such information �rst needs to be obtained
from associated user-pro�le databases. The analytics servers
thus aggregate data streams from the web servers and user
databases to provide advanced analytics.

This approach, however, su�ers from twomain drawbacks.
The �rst drawback comes from the trend of infrastructure
migration towards the network edge. In particular, content
and service providers have been continuously pushing their
systems and content to the users, from the content deliv-
ery networks (CDNs) to the o�-nets – servers outside their
own autonomous systems (ASes) – which have become a
common approach to expanding the footprint of content hy-
pergiants [60]. Nevertheless, the semantic-oblivious requests
cannot be analyzed before they reach the data centers that
are distant from these edge systems/contents.

The second drawback is disrespect for user privacy, which
has raised increasing attention and concerns in recent years [34,
48, 95]. More concretely, the semantic-oblivious requests,
while simple in design and hence commonly adopted, carry
individually identi�able information, e.g., user IDs. The user
IDs have allowed the service providers to record any infor-
mation about the individual users as much as they can for
an inde�nite duration as long as the users do not actively
clean up – and most users are not aware of it at all.

In this paper, we explore the potential of catching and pre-
processing user clicks early, much sooner than when they
reach the data centers while preserving user privacy to the
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largest extent. In particular, we look at the content providers’
network and o�-nets, as well as edge ISPs. Our goal is to
design a system to make early click catching, in-network
processing, and anonymity preserving analytics possible,
and to quantify the achievable performance bene�ts.

To enable this approach, we propose semantic cookies, en-
crypted data structures set by the server and then kept at the
user. Contrary to widely-used state-of-the-art HTTP cook-
ies, which are e�ectively pointers to semantic user databases
(typically hosted at data center back-ends), we plant semantic
user information that is not individually identi�able directly
into the cookies themselves. This enables collaborating edge
components, mostly edge servers but also switches, to an-
alytically process the user requests. Importantly, semantic
cookies can be seamlessly deployed without altering any of
the existing protocols.
We design and implement Snatch, the �rst prototype of

our edge-network analytics system. We explore two designs.
The �rst one places semantic cookies at the application
layer, HTTPS, and processes them at the o�-net’s or CDNs’
edge servers. The second one places semantic cookies at the
transport layer, QUIC, which enables processing them at
ISP switches. The underlying trade-o� is that application-
layer semantic cookies provide high �exibility in terms of
the number of user features, while transport-layer cookies
provide faster analytics. Luckily, both types of cookies could
be utilized simultaneously, when needed.

Snatch is a two-tier analytics system. The �rst tier consists
of either edge servers, which handle application-layer seman-
tic cookies, or LarkSwitches, which handle transport-layer
semantic cookies. The second tier consists of AggSwitches,
which inspects all the incoming packets to the analytics
server. The �rst-tier devices early re-direct semantic data
to the state-of-the-art analytics servers. Optionally, the two
tiers coordinate to enable in-network analytics. The number
of supported operations available at switches is considerable
(see Appendix C); hence, it provides valuable in-network an-
alytics support. Snatch augments existing analytics systems
in a fully cooperative manner.

We implement Snatch and evaluate it in a testbed. To fully
understand the performance gains that Snatch can achieve
on the Internet, we conduct a large-scale measurement study.
In particular, Snatch involves several components: the edge
server, ISP switch, web server, and analytics server. To study
the performance of these entities in practice, we host HTTPS
websites using AWS EC2 instances. In addition, we purchase
CDN services from Cloud�are and AWS CloudFront. Finally,
we utilize over 2,000 residential nodes from the Mysterium
VPN, spread around the world, as users. These measurements
enable us to accurately estimate network latencies among
users, edge ISPs, o�-nets and CDNs, and data centers, and
evaluate performance gains achievable by Snatch.

We �nd that Snatch brings signi�cant speed-ups, particu-
larly in scenarios when all calculations can be done in the

network. Speci�cally, in-network analytics reduces latency
by 5x relative to the scenario when only redirections are
enabled. Processing semantic cookies at the transport layer
is 3-8x faster than at the application layer. When users are
spread across the world, Snatch manages to speed up user an-
alytics by 10x compared to existing analytics systems, while
the speedup climbs to 30x when users are located on a single
continent, e.g., North America.

2 Background And Motivation

2.1 Streaming Analytics

Data streaming analytics targets enormous data that arrive
continuously in time. E�cient data streaming analytics is es-
sential to many important real-time applications, e.g., social
networks [44], ad campaigns [46], and beyond [50]. Early
streaming analytics systems use data�ow models [32, 42, 43].
With the increasing demand for streaming analytics, the last
decade has witnessed a thriving of proposals: MillWheel [30],
Storm [91], Heron [70], Puma [44], Spark Streaming [11,
31, 102], Apache Flink [8], and more. Among them, Spark
Streaming [102] started to aggregate the streaming data over
a short interval and perform batch analytics in a Map-Reduce
fashion [51]. The state-of-the-art streaming analytics pro-
duce results at a timescale of ∼1 to ∼10 seconds [21, 46, 102].
The above-mentioned work focuses on streaming ana-

lytics in a single cluster environment, leaving the arrival

of data out of scope. In this paper, we make the arrival of
data a central topic of our research. For example, message
queues [9, 10, 15, 23] are usually adopted in real-world pro-
duction to link the data ingestion pipeline and the streaming
analytics systems [46].We include the message queues when
discussing the streaming analytics systems in this paper.
Yet, the message queues and the streaming analytics sys-

tems do not depict the whole picture. While some applica-
tions analyze only internal data, i.e., stored or generated
inside the data center, many applications analyze data from
outside the data center, e.g., the users’ requests, generated
from end-user networks scattered around the world. Fur-
ther, in online applications scenarios, the application-level
streaming data is typically sent to the analytics servers only
after it reaches web server endpoints in data centers. Hence,
rather signi�cant latency can be added to the user requests
after they are generated by end users.
The time cost incurred before data arrives at the ana-

lytics server is nontrivial (see § 2.3), however, it is often
disregarded. To depict a comprehensive picture, we con-
sider an entire online streaming analytics cycle. The cycle
includes the streaming data generation and transmission, i.e.,
users send requests to the servers and the servers process
the requests, data processing, i.e., by message queues and
event processors [21]. Finally, the cycle terminates with a
traditionally-de�ned streaming analytics system, e.g., Spark
Streaming [11].
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2.2 Anonymity Preserving Analytics

Anonymity preserving analytics refers to computational an-
alytics over aggregated results from the users without re-
vealing the individual identities, and hence provides strong
privacy guarantees [54, 100]. Unfortunately, widely-adopted
Web cookies present a signi�cant privacy-leaking vertical,
even at the network level [95]. A single identity leak in one
application opens up unforeseen tracking opportunities.
With the growing public attention and concerns about

individual privacy, anonymity preserving analytics has been
supported by legislators [2]. The related studies have also
become a hot topic in the security and privacy academic
community [48, 56]. Complying with the trend, hyper-giants
have also introduced their own data collection and ana-
lytics systems that preserve user anonymity, for instance,
Google [34, 57], Apple [90], Microsoft [52], and more.

2.3 Opportunities

Migrating infrastructure towards the edge. Content and
service providers are continuously pushing their systems
closer to the users. Content delivery networks (CDNs) allow
the content providers to place static content at servers nearby
users, and thus improve their experience. CDNs have thus
become one of the most crucial components of the Internet
today, serving billions of users across the world. In fact, more
than half of the Internet tra�c originates from several top
CDN providers [60]. In addition to building their own data
centers and backbone networks [63, 69], the major content
providers also deployed o�-net servers [60]. Such servers are
placed in the eyeball, end-user, networks. The deployment of
these edge servers further reduces the latency between the
user and the content, thereby improving the user experience.
In parallel with this trend, the service providers are also

pushing computation closer to the users. Hence, many dis-
tributed streaming analytics systems are proposed, aiming
at working with limited resources available at the edge [40,
41, 59, 79, 83]. While helpful in certain specialized scenarios,
most applications still require centralized streaming analyt-
ics with data from users scattered all around the globe. In
this paper, we focus on centralized streaming analytics.
Importantly, with the introduction of edge servers, the

overall architecture of online streaming analytics systems
has changed. The streaming analytics server (cluster) is usu-
ally not placed in the same region as the edge servers, which
is where the users are directed �rst. This results in compli-
cations of security and privacy issues, e.g., a third entity has
access to the cookies or sensitive content [74, 97], as well as
a rather substantial increment of delay between the compo-
nents of the online streaming analytics systems, as we will
demonstrate below.

Case Study. The above infrastructure migration to the edge
a�ects many online applications. A �rst example is that an

advertisement provider may want to receive aggregated re-
sults of its ongoing advertisement campaign in real-time
to make decisions, e.g., the o�ering in the following adver-
tisement auctions, based on them [46]. A second example is
that real-time crowd analytics, a technique crucial to many
businesses [27], needs to aggregate results about informa-
tion in a particular region. A third example is the needs for
faster response to users’ resource demands. Today, cloud
platforms have become the go-to solutions for many compa-
nies because of their capability to scale up/down in a timely
manner. Nevertheless, the service scaling (where contain-
ers are usually used) needs to deploy before they become
available. Hence, faster response to the demand and hence
earlier provoking service deployment changes are crucial to
the user experience for various online applications [1].

Below, we analyze the �rst example of the advertisement
campaign in detail. Here, the data is generated when a user
clicks on an ad link. It follows that a request is sent to an
edge server, e.g., in the case of a CDN, with the user ID
embedded in the HTTPS cookie and the ad ID included in
the HTTPS URL. The edge server then passes the cookie to
the web server in the closest data center. Next, the web server
processes the cookie and delivers the data to the (centralized)
analytics system which is potentially at another data center.
Message queues are usually adopted to deliver the data. If
the user semantic information is needed, e.g., demographic
or other information, the analytics server needs to �rst fetch
this data from a database before being able to perform further
analytics operations.

In this example, we assume that the application developer,
who owns the web server, has control over all the cookies,
meaning that they are all �rst-party cookies. As a result, the
cookies are initially sent to the web server, and any ad broker
either resides at the analytics server or receives information
from it. It is important to note that in the current Web, this
assumption may not hold true, as users may send separate
requests to ad broker URLs along with third-party cookies.
However, the use of these third-party cookies contradicts the
prevailing trend of enhancing privacy and has already been
banned by some major browsers [4, 5, 28] and is expected to
be banned by the remaining browsers in the near future [3].
Consequently, we focus on �rst-party cookies in this study.

Drawbacks and Opportunities. We conduct a large-scale
measurement study to comprehensively quantify the latency
in�ation cost (details are provided in § 5). Figure 1(a) illus-
trates an example of the analytics time cost breakdown of one
data point. It starts from the request generated by the user
in New York1. The closest edge server, which caches static
content, is selected and is in New York. The web server that
provides dynamic content and handles cookies is hosted at

1Here we assume QUIC is adopted as it is becoming popular, and its hand-
shake is simpler than TCP+TLS. With TCP+TLS handshakes, the time cost
of communication in Figure 1(a) will be more than doubled as it is now.
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number of users who viewed the ads. But in practice, more
advanced analysis of the composition of the users may be
needed to allow the ad providers to make decisions based on
the results. Thus, we assume that the analytics server wants
to analyze the composition (by their demographic categories)
of users who viewed a particular ad in an instant windowed
time. This can be achieved with three operations as shown in
Figure 1(a): (8) �ltering the arriving cookie streams by event
type, e.g., a user viewed an ad (L1); (88) then requesting the
database for the user features (demographic information) by
the user ID embedded in the cookies (L2); and (888) counting
the number of users for every user feature (L3-4).

In Snatch, the web servers should set the semantic cookies
as a replacement of the user ID, as shown in Figure 1(b), after
the �rst connection with the user and the information of the
user becomes available. It is noteworthy that the �rst connec-
tion cannot be accelerated and is not depicted in Figure 1; all
the results we present in this paper focus on subsequent con-
nections after the initial one. The semantic cookies should
be kept by the user, similar to the current design. What is
di�erent is that the ad provider should not store any user
information. From then on, the user sends requests with the
semantic cookies. The semantic cookies can be recognized
and processed by the edge server. As shown in Figure 1(b),
the edge server �lters the cookies by the event type (right L1).
It also counts locally the number of users who viewed a par-
ticular ad for every user feature (right L2-3). The processed
data can be forwarded directly to the analytics server. Be-
fore it arrives at the analytics server, a programmable switch
close to the analytics server named AggSwitch aggregates
the local counts from all the edge servers (left L1) before
delivering it to the analytics server.

As there are many devices and parties involved in Snatch,
a controller (not shown in Figure 1) is present to coordinate
all the participants. As shown in Figure 2, Snatch controller
is run by a trusted party. It accepts analytics tasks from appli-
cation developers and distributes the associated instructions
to di�erent devices held by di�erent parties.

In this example, all the analytics have been completed on
the way to the analytics server while no user ID is present.
The time costs on analytics operations (∼500 ms) are reduced
to <1 ms given that (8) each web server only handles a small
number of requests and hence has minimal costs and (88) the
line-rate processing ability of the programmable switches. It
follows that the total latency from when the data is gener-
ated to when the decision can be made based on the data is
reduced by ∼80% from 1008.3 ms to 228.6 ms. This demon-
strates the feasibility and bene�ts of processing the data
early.

Moreover, the semantic cookies in many scenarios are con-
stant. For instance, in the second example of real-time crowd
analytics, what needs to be aggregated and analyzed is the
user’s information, e.g., demographic or interests; in the third
example of faster response to users’ resource demands, what

needs to be aggregated and analyzed is the typical demand
of the users. These information can be kept at the user’s
side and sent without knowing what the user’s requests
are. Thus, we further propose to encode encrypted seman-
tic cookies in the transport layer. With the programmable
switch’s capability to read and parse packet headers, the
semantic transport-layer cookies can be acted upon as soon
as the user requests reach the edge ISPs, as the dashed lines
in Figure 1(b) illustrate. In particular, semantic cookies could
(optionally) be pre-processed, and forwarded by the Lark-
Switch, as shown in the �gure. This further cuts analytics
latency to around 48 ms – a ∼95% reduction in the total delay.

3.2 Threat Model

We assume a third-party attacker who can monitor and
collect network packets from a limited geolocation range.
We also assume an attacker who may join the system as a
user to receive the semantic cookies from the web servers.
The attacker may try to decode the format of either the
application-layer or transport-layer semantic cookies by ex-
amining across the collected packets. Nevertheless, the at-
tacker should be computationally bounded and not be ca-
pable of decrypting ciphertexts that are encrypted using
advanced cryptography algorithms, such as AES and TLS.

In general, being able to decode the semantic cookie would
allow the third-party attacker to intercept user information
from network eavesdropping, or send fake data to distort
the application developers’ analytics results.
Moreover, we assume an honest-but-curious edge node,

i.e., edge server or LarkSwitch in Figure 1(b), who follows
the protocol but may try to understand the application-layer
purposes of the semantic cookies, and hence steal the user
information for commercial purposes. On the other hand,
we assume a malicious application developer who may try
to insert individually identi�able information into semantic
cookies while using our system.

3.3 Semantic Cookie

Contrary to "traditional" cookies, which are used as pointers
to a back-end database of user attributes, semantic cookies
enable web servers to directly encode user attributes and
push them to the end-users. The semantic cookies cannot be
in plaintext but need to be encoded and encrypted because
they will be stored at the users’ side.

Application-Layer Semantic Cookie. Because the edge
server is the endpoint of the users’ TLS connections, it has
the access to all the application-level information in the users’
requests, including the application-level cookies as required
by our system. For instance, if users are sending an HTTPS
request, then the edge server is able to access the headers,
cookies, and payload of the HTTPS request.
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Therefore, leveraging edge servers for early forwarding
the application-layer cookies is straightforward to imple-
ment. Most current edge services, e.g., Cloud�are’s CDN,
allow the user to set custom page rules to adjust caching
levels, forward requests, modify headers, etc [12, 14]. What
is needed in Snatch is to decrypt the cookies, match semantic
cookies’ names and values, and send the extracted data to
a custom destination (analytics server) – if possible – in a
custom format. The additional computational cost is minimal
as it is similar to existing header-related operations.
The bene�ts of application-layer cookies are three-fold:

First, it can support semantic cookies with as many sub-
cookies (user features) as needed by the applications. Second,
it does not require any modi�cation on the user’s side. Third,
it is fully compatible with the current HTTPS request design
and simply needs to include semantic cookies. In addition,
the cookies can be easily kept across di�erent connections
between the user and the server over time, regardless of the
underlying protocol, e.g., TCP, UDP, QUIC, TLS, etc.
To better quantify the bene�ts of using semantic versus

non-semantic application-layer cookies, we aim to quantify
the speedup. It is de�ned as the ratio of the expected la-
tency in two scenarios, i.e., non-semantic vs semantic. Hence,
speedup is ≥1. Denote user by� , edge server by �, web server
by, , and analytics server by �. Then, 3�� is the delay be-
tween the user and the edge server, and so on. Let )CA0=B be
the transmission duration of the request.
We further denote by )� , ), , and )� the time costs for

processing requests at the edge server, web server (including
database communication), and analytics server (including
message queues), respectively. Then, for HTTPS request on
top of QUIC 1-RTT, the speedup is

(0??−ℎCC?B =
33�� + 33�, + 3,� +)CA0=B +)� +), +)�

33�� + 3�� +) ′
�
+) ′

�

, (1)

where ) ′
� and ) ′

� are the time costs when Snatch is involved.
Because of the minimal additional cost from processing
application-layer cookies at the edge server, we consider
) ′
� = )� . Further, coe�cient 3 in the equation comes from
the QUIC 1-RTT handshake process. More analysis on QUIC
0-RTT and TCP protocols is available in Appendix B.1.

Transport-Layer Semantic Cookie. Transport-layer cook-
ies are semantic cookies that are encrypted and encoded
in the transport-layer protocol. As identi�ed in a previous
study [33], cookies can be encoded in three protocols with-
out requiring any modi�cations on the users’ machines: IPv6,
TCP, and QUIC. In this paper we only consider QUIC. Dis-
cussions for IPv6 and TCP and more details for QUIC are
provided in Appendix B.2.

Snatch fully utilizes the features of QUIC. We consider all
the connections between a user and an edge server except
the �rst one – at least one connection is needed before se-
mantic cookies are available. If the user uses QUIC 0-RTT,
she repeats the connection ID from the last connection where

transport-layer cookies are encoded. LarkSwitch then will be
able to decode the transport-layer cookies and forward them
to the analytics server. This requires no modi�cation on the
user’s side. If the user uses QUIC 1-RTT, a slight modi�cation
of the code in userspace is needed to allow the QUIC 1-RTT
to keep the transport-layer cookie in the new connection,
i.e., QUIC should remember the connection ID from last con-
nection but re-generate a subset of the bits without tweaking
the transport-layer cookies. In summary, both QUIC 0-RTT
and 1-RTT �t our vision and work for Snatch.

We further quantify the bene�ts of transport-layer seman-
tic cookies. Let � denote ISP. Hence 3�� is the delay from user
to ISP. Similar to the analysis for application-layer cookies,
the speedup of the streaming analytics for QUIC 0-RTT is

(CA0=B−0ACC =
3�� + 3�, + 3,� +)CA0=B +)� +), +)�

3�� + 3�� +) ′
�

. (2)

For QUIC 1-RTT, its handshake needs 1 RTT and hence the
coe�cients for 3�� and 3�, become 3, while the denomina-
tor keeps the same as the transport-layer cookie is included
in the �rst packet header. The speedup is

(CA0=B−1ACC =
33�� + 33�, + 3,� +)CA0=B +)� +), +)�

3�� + 3�� +) ′
�

. (3)

3.4 In-Network Streaming Analytics

Snatch further seizes the opportunity to accelerate stream-
ing analytics by leveraging the in-network computation: the
programmable switch performs computation at line rate,
much faster than the servers [82]. For transport-layer cook-
ies, streaming analytics can be completed in the data plane
– via the cooperation of LarkSwitches and the AggSwitch.
The LarkSwitch decodes the transport-layer cookies, pre-
processes the data, and send them to the analytics server. On
the last hop to the analytics server, an AggSwitch extracts
and aggregates the data from all LarkSwitches. Note that for
application-layer cookies, the analytics can be done in the
network as well. It only requires the edge server to forward
the application-level data in a format agreed in advance,
which allows AggSwitch to decode and aggregate the data.

The modern programmable switch is able to perform AES
encryption/decryption [45] and calculate most of the com-
mon statistics [65, 76]. We limit the pre-processing to the
supported operations, and leave more complex ones to the
analytics servers. When all the operations of a target analysis
are supported by the switches, Snatch reduces all the time
costs of Pub/Sub services and the analytics process.

We consider two types of forwarding schemes: per-packet
and periodical forwarding. Per-packet forwarding satis�es
the needs of applications that require very low latency and
immediate knowledge of the streaming data.When all the op-
erations of a target analysis are supported, Snatch provides
a huge speedup, i.e., ) ′

� < 1 ms because the programmable
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Figure 3. Transport-layer cookie design (QUIC).

speci�c user data range and analytics accuracy requirements
following business models.
In general, Snatch may require the app developer to re-

design cookies mostly because of the discarding of individ-
ually identi�able information. Further, the app developer
should leverage cookie encodings, correlation, and poten-
tially DP, and maybe employ multiple edge providers to pre-
vent them from learning the semantic cookies. Beyond cookie
redesigns, it does not rely on any particular constraints on
app developers or ad brokers.

Malicious Application Developer. The last concern is that
it is possible for the application developer to include indi-
vidually identi�able information in a non-semantic cookie,
i.e., not processed by Snatch, during the communication be-
tween the web server and the users. This is prohibited by
Snatch’s policy and penalties will be applied once discovered.
We leave the technical enforcement of excluding individu-
ally identi�able information in this scenario as future work.
It is noteworthy that while such technical enforcement is
not included in this paper, Snatch has made it possible to
regulate the usage of individual identi�ers in the cookies by
providing an alternative system that works well – or even
better – without such identi�ers.

4 Implementation

4.1 Cookies and Programmable Switch

We implemented a prototype of LarkSwitch and AggSwitch
based on an Intel To�no switch. We �rst present the cookie
and packet design. Then, we introduce the switch logic. Fur-
ther, we introduce our implementation and discuss the scope
of analytics with programmable switches.

Transport Cookie Design.We choose QUIC protocol as the
carrier of transport-layer cookies because it fully meets the
requirement of Snatch (see § 3.3). We encode the transport-
layer cookies in the up-to-160-bit connection-ID �eld of
QUIC headers. As shown in Figure 3, we split the connection-
ID into four parts: (1) 8-bit destination connection ID (DCID),
(2) 8-bit application-ID, (3) bitmap of variable length, and
(4) cookie-stack of variable length. DCID is randomly gen-
erated for connection identi�cation. The application-ID is
used for distinguishing from normal QUIC packets and speci-
fying the format of the remaining bits. Because of the limited

space, the format of bitmap and cookie-stack are not �xed but
application-dependent. Assuming there are # sub-cookies
used by an application, corresponding to# features, then the
bitmap has # bits where each bit denotes whether this sub-
cookie is present. The cookie-stack includes # sub-cookies
and the length of each sub-cookie is pre-de�ned by the con-
troller. # is bounded by the memory and stage limitation of
the switch. The remaining bits (if any), unoccupied by the
bitmap and cookie-stack, marked as DCID-R2 in the �gure,
are also randomly generated for connection identi�cation.
Next, we create a custom packet header on top of UDP

to carry early-forwarded cookies or pre-processed data (ei-
ther by LarkSwitch or edge server) for AggSwitch. For more
details please refer to Appendix B.3.

To prevent the cookies and data from being hacked or tem-
pered by the users or attackers, the transport-layer cookies
after application-ID is encrypted using AES-128. The AES-
128 key is only known to the application developer and the
edge nodes, i.e., edge server or LarkSwitch/AggSwitch. It is
noteworthy that encrypting or decrypting the up-to-160-bit
transport-layer semantic cookies using AES-128 only adds
∼0.1 ms delay with a modern To�no switch [45].

Switch Logic. When a new application is registered at a
LarkSwitch or AggSwitch, its parameters – including the
application-ID, the format of bitmap and cookie-stack, and
the AES key – are stored in the switches’ match-action table
entries. LarkSwitch will try to match the application-ID for
all the incoming QUIC packets. When a packet is matched,
the switch decrypts and decodes the available cookies/data
following the parameters of the corresponding application.
the switch then performs counting or other statistical opera-
tions on the decoded cookies/data. For per-packet forward-
ing cookies or for periodical forwarding cookies when the
period ends, the switch creates a new custom packet (see
appendix B.3) and sends it and associated statistics to the
analytics server. To do so, we make the switch clone the
original packet. The original packet is still forwarded to the
web server to keep the original communication. Meanwhile,
the cloned packet header will be rewritten and its payload
will be removed before being sent to the analytics server.

Statistics Calculation. Both the LarkSwitch and the Ag-
gSwitch involve statistics calculation when they process the
cookies and data. The match-action pipeline design makes
programmable switches naturally classi�ers and counters.
In our prototype, we have implemented the basic statistics
which satisfy the (partial) needs of most streaming applica-
tions. For data type class, we implement counting by match-
ing value. For data type number, we implement sum, min,
max, and average calculations.

We further discuss the scope of applications supported by
Snatch’s in-network streaming analytics. P4 switches sup-
port most of the streaming analytics operations. A detailed
example is provided in Appendix C where we explore the P4
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6.3x and 8.3x with INSA. Compared to Figure 5(b), Trans-
1RTT under-performs the results from § 5.1, yet App-HTTPS
over-performs the corresponding results. This is because the
processing time costs at the edge server and at the analytics
server in our testbed are both smaller than in § 5.1.

Next, we evaluate the impact of the workload. We take the
median delays from the measurement, and adjust the work-
load, which we quantify as the number of requests that the
clients send per second. We consider per-packet forwarding
here because it consumes more bandwidth and is thus more
sensitive to workload compared to periodical forwarding.
Figure 6(b) shows that the total time costs are stable with the
same rank as in Figure 6(a) when the workload is relatively
low (<100). Later, i.e., when workload >100, the total time
costs increase as the workload increases for all scenarios
except Trans-1RTT with INSA, demonstrating the power of
in-network transport-layer switch-based processing. When
the workload is equal to or greater than 300, the time costs
for no-Snatch and App-HTTPS start to increase sharply (note
that the y-axis of Figure 6(b) is in log scale). Likewise, App-
HTTPS with INSA is less e�ective than Trans-1RTT without
INSA. This suggests that congestion happens at the edge
server and the web servers because they are overwhelmed
by the high request rate.

Meanwhile, however, Trans-1RTT with INSA keeps a very
stable performance – it takes 61 ms regardless of the work-
load. This reveals a property of Snatch: no parallelism in-

�ation. The stable performance is expected because of the
nature of line-rate processing of programmable switches and
the design of Snatch: Trans-1RTT skips all the computation
on the edge and web servers (and the analytics server if INSA
is enabled) where congestionmay happen at a high workload.
In fact, Trans-1RTT and Trans-0RTT are able to keep the
best performance as long as the throughput does not exceed
the capacity of the switches, which is over 10 Tbps [16].
Finally, we evaluate the periodical forwarding. We adopt

the median delays and a workload of 200 RPS. Figure 6(c)
shows that as the periodical interval increases, the total
time cost increases while the bandwidth consumption (grey
line) between LarkSwitch/the edge server and AggSwitch de-
creases. Nevertheless, when the periodical interval is 500 ms,
Trans-1RTT and App-HTTPS still speed up the total time
cost by 1.2x and 1.1x without INSA, or 1.8x and 1.7x with
INSA. The bandwidth consumption linearly decreases from
∼112 Kbps to ∼1 Kbps as the periodical interval increases
from less than 5 ms to 500 ms.

6 Discussion

Semantic Cookie Related Issues. One question may raise
on how the application developers can derive the semantic
information without a user ID. In fact, we can regard the
semantic cookie as a state machine: the developers have the
state from the last request, update it based on the current
request, and save it on the users’ side for the next request.

Another issue may be the additional overhead from adopt-
ing semantic cookies. Transport-layer semantic cookies do
not incur any overhead as an existing header �eld of QUIC
with limited length is used. Application-layer semantic cook-
ies inherit the current cookie design but ideally only discard
the individual identi�ers, which brings no overhead. Still,
overhead may be introduced by the way that the developers
design the application-layer semantic cookies. Currently, the
developers build their own database and store as much user
information as they want, e.g., the complete visit history
per user [92]. With the semantic cookies, the developers can
only collect the visit history by appending the new visit to
the semantic cookies every time the user visits the website.
This will indeed bring non-trivial overhead. Nevertheless,
while no hard restriction on the size of semantic cookies is
applied, we argue that this is a feature rather than a defect:
the semantic cookies are meant to prevent the developers
from logging everything about the user, e.g., complete visit
history. Hence, it forces the developers to carefully re-design
the cookies and only ask for the least; otherwise, they may
lose customers because of bad experiences.

Alternative to Latency In�ation. One alternative to re-
duce latency in�ation introduced in § 2.3 is to ask the users
to send duplicate requests to both the web servers and the
analytics servers. Yet, there are many drawbacks from this
approach. First and most importantly, it does not enhance
user privacy as Snatch does because individual identi�ers
are still present. Second, it cannot bene�t from in-network
computation, which may be a larger factor in performance
improvement than latency in�ation (see § 5). Third, it re-
quires the users to double their bandwidth consumption and
leads to a worse web experience, yet without o�ering any
incentives to the users. In addition, exposing the analytics
server to public may open the door to attacks.

View From Application Developers. With Snatch, appli-
cation developers can bene�t from faster online streaming
analytics and hence obtain more valuable results. Meanwhile,
they lose the freedom to store whatever they want from the
users’ activities andmay fail to perform certain analytics, e.g.,
individual pro�ling [92]. Nevertheless, more studies are look-
ing into how to e�ectively perform anonymity-preserving
analytics [34, 52, 90]. It is thus questionable how much the
cost really is from discarding individual-level analytics. More-
over, developers may lose the freedom anyway as stricter
privacy policies may be enforced given the public’s rising
privacy concerns. In addition, the developers can actually
bene�t from respecting user privacy: users who care about
their privacy may be more inclined to websites that adopt se-
mantic cookies compared to other competing websites. This
may become an important incentive for more developers to
adopt the semantic cookies, and (hopefully) eventually lead
to widespread adoption of semantic cookies, similar to the
history of HTTPS adoption.
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Generality of Analytics. In our implementation, we pre-
install programs at the edge devices and have them accept
RPCs from Snatch controller to update certain parameters
(§ 4.3). This would allow edge devices to recognize new appli-
cations and perform analytics accordingly. Yet, we acknowl-
edge that our implementation only supports �xed types of
aggregation analytics. While the edge servers should be able
to conduct any streaming analytics, we have analyzed the
capabilities as well as the limitations of the programmable
switches (§ 4.1). In an ideal implementation, the controller
should generate e�cient and on-demand codes and push
them to the edge devices. We leave this as future work.

Fault Tolerance. Snatch might fail due to various issues.
For example, inconsistency might occur when the controller
tries to update other components (see § 4.3). Other examples
include failing to update AES keys at edge servers, or packet
drops, etc. All these issues will result in the same outcome:
the aggregated results become inaccurate. Fortunately, we
can detect such failures by running the same analytics on
data that is collected from the web servers and arrives at a
later time. Application developers should report the result
di�erence to the Snatch controller, which would then check
and update the other components through RPCs. We leave
the real-time detection and correction for future work.

In-Network Streaming Analytics Trade-o�s. In the eval-
uation, we consider that either INSA is enabled or disabled.
In practice, and for most real-world scenarios, the speedup
is in between because of the complexity of queries. When
more computation is o�oaded to the network, the speedup is
higher given the negligible time cost for the processing at the
switches. Still, more computation also incurs more switch
resources, i.e., fewer applications can utilize the switches’
support. Thus, there exists a trade-o� for the ISPs: support
more applicationswith a smaller speedup for each, or support
fewer applications with a larger speedup for each. Indepen-
dently, Snatch provides a considerable speedup compared to
the state-of-the-art even when INSA is disabled.

7 Related Work

Streaming Analytics. In addition to streaming analytics
systems discussed in § 2, JetStream [84] and AWStream [103]
explore thewide-area streaming analytics whose data sources
are widely distributed and propose to reduce the data rate
to cope with the limited WAN bandwidth. In addition, Irid-
ium [83] optimizes the data placement before the arrivals
of queries. Sana [67] applies WAN-aware multi-query opti-
mization. The wide-area streaming analytics assumes that
the data is heading directly to the analytics server after it
is generated. This is however di�erent from our concerned
scenarios where the data accompanies the user requests and
thus makes a detour. Snatch removes this detour and enables
in-network analytics via semantic cookies.

In-NetworkComputation.With the advent of programmable
networking hardware and programming languages [35, 36,
88], researchers have proposed to leverage in-network com-
putation to handle network management [73], caching [66],
load balancers [78], deep neural network training [72, 87],
etc. Ports et al. [82] summarizes a general guide of what
and when to o�oad the computation to the network. While
most work targets scenarios within data centers, Jagen tar-
gets ISP-centric defense [77]. Snatch aims to speed up online
streaming analytics by leveraging the in-network computa-
tion and in cooperation with both the ISPs and the cloud.

Anonymity Perseverance. The anonymity perseverance
research spans across di�erent �elds including social net-
works [58, 85], crowd-sourcing [64], recommendations [99],
etc. One approach is to add structural noise to its data to
report [54], and thus prevent the attackers from inspecting
what each user actually sends while ensuring that the ag-
gregated results are statistically correct. Another approach
is using secure multi-party computation protocols, where
a set of non-colluding servers privately perform computa-
tion over the user data [48]. However, MPC methods often
come with signi�cant overhead [38, 75, 80]. In general, the
common challenges for all privacy-preserving analytics in-
clude a high cost and robustness towards malicious users
and servers. A third approach is to make the users send data
through an anonymizing network, e.g., mix-net [37, 71] or
Tor [62, 81], where the data and individual identities are de-
coupled. However, these methods incur a high cost [49, 94].
Our proposal instead prevents the user from sending indi-
vidually identi�able information by design.

8 Conclusion

This paper presented Snatch, a system that early forwards
and pre-processes the online streaming data at the network
edge to speed up the online streaming analytics and pre-
serve user anonymity. The key to enabling Snatch is the
introduction of semantic cookies, which carry encrypted
user information that is individually unidenti�able and di-
rectly available for analytics. We demonstrated that it is
viable to encode semantic cookies in the existing application
or transport protocols. Our evaluation of Snatch – based on
real-world measurements – showed that when processing
can be done early in-network, Snatch can speed up user
analytics by 10-30x. Given the growing trend of migrating
infrastructure towards the edge, such speedups along with
privacy enhancements are likely to soon become a reality.
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A Ethical Consideration

Our measurement in Section 5.1 involves sending requests
through proxies located at Internet users’ home networks.
However, these Internet users are selling their Internet ac-
cess, and the dVPN service is publicly available. Therefore,
this is no di�erent than connecting to traditional VPNs. Fur-
ther, we did not send any malicious requests or had any
operations which might endanger the proxies. Thus, this
work does not have any ethical concerns.

B System Design

B.1 Application-Layer Semantic Cookie

Speedup. Here we investigate the speedup for application-
layer semantic cookie with QUIC 0-RTT connections. Be-
cause QUIC-0RTT send data at the very beginning, we have

(0??−ℎCC?B−0ACC =
3�� + 3�, + 3,� +)CA0=B +)� +), +)�

3�� + 3�� +) ′
�
+) ′

�

.

(4)

We further look into the speedup for application-layer
semantic cookies when TCP connections are adopted. For
an unencrypted HTTP request, on top of TCP, the speedup
(0?? of the streaming analytics is

(0??−ℎCC?−C2? =

33�� + 33�, + 3,� +)CA0=B +)� +), +)�

33�� + 3�� +) ′
�
+) ′

�

,

(5)

where the coe�cient 3 in 33�� and 33�, comes from the
1-RTT TCP handshake process during the connection estab-
lishment.
For HTTPS requests, TCP + TLS 1.2 handshakes need at

least 3 RTTs to set up. Thus, the speedup is

(0??−ℎCC?B−C2? =

73�� + 73�, + 3,� +)CA0=B +)� +), +)�
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�
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.

(6)

For example, 3 RTTs needed to establish an HTTPS connec-
tion between a client and an edge servers implies 7 one-way
delays, i.e., 7 3�� .

B.2 Transport-Layer Semantic Cookie

Transport-layer cookies are semantic cookies that are en-
coded in the transport-layer protocol. As identi�ed in a pre-
vious study [33], there are three ways to encode cookies in
the transport layer without requiring any modi�cations on
the users’ machines: (1) encode the cookie into the least sig-
ni�cant bits of IPv6 addresses with a maximum of 64 bits, (2)
encode the cookie into the timestamp option of TCP with
a maximum of 32 bits, and (3) encode the cookie into the
conneciton ID of QUIC with a maximum of 160 bits.

IPv6 – The use of IPv6 addresses requires the assumption
that the MAC address is associated with the least signi�-
cant bits of the IPv6 address, and thus is not appropriate in
our case. We consider the other two options: via the TCP
timestamp and via the QUIC connection id.

Client

Initial (SrcConnID, DstConnID), TLS Hello

Initial (DstConnID*, SrcConnID),  

TLS Hello, CERT, FIN

Data (DstConnID*)

Server

ACK (SrcConnID), 200

....

3x delay

(a) QUIC 1-RTT.

Client

Initial (SrcConnID, DstConnID*), TLS Hello, Data

Initial (DstConnID**, SrcConnID),  

TLS Hello, CERT, FIN

Data (DstConnID**)

Server

ACK (SrcConnID), 200

....

1x delay

(b) QUIC 0-RTT.

Figure 7. QUIC handshake procedure and the time cost for
the server to receive data.

TCP – When the TCP timestamp option TSP is set and used
in one direction (e.g., from server to client), all the packets
in the reverse direction (from client to server) will attach the
same TSP value automatically. However, there are several
issues with this approach. First, the TSP value cannot be
reused in the next TCP connection. Second, if the client wants
to send the cookie in the next TCP connection proactively,
it requires non-negligible modi�cation on the client’s side
– access to the root privilege and modifying the outgoing
packets accordingly. This breaks our vision of minimal to no
client modi�cation.

QUIC – QUIC is a transport-layer protocol implemented in
the userspace on top of UDP. The QUIC connection establish-
ment procedure is illustrated in Figure 7 (left for the 1-RTT
handshake, right for the 0-RTT handshake). For QUIC 1-RTT,
a long QUIC header will be used during the handshake phase.
The client will send two randomly generated connection IDs
SrcConnID and DstConnID. Then the server will copy Src-

ConnID but set a new DstConnID* and return them to the
client. In the following communication, a short QUIC header
will be used where the client sends packets with DstConnID*

and the server sends packets with SrcConnID. Further, the
server can reset the connection ID with version negotiation
packets at any time. For QUIC 0-RTT, it is only applicable
when there was a previous connection between the same
end-points. The client will send the same DstConnID* as in
the last connection.
We �nd that the connection-id �eld, in particular Dst-

ConnID*, allows the encoding of transport-layer cookies. In
addition, it takes minimal e�ort to modify the connection-id
�eld because QUIC is implemented in the userspace. Thus, it
�ts our vision of minimal (QUIC-1RTT) to no (QUIC-0RTT)
client modi�cation.

B.3 Custom Aggregation Packet

We create a custom packet header on top of UDP to carry
early-forwarded cookies or pre-processed data (either by
LarkSwitch or edge server) for AggSwitch. Figure 8 shows
that the custom packet header includes three parts: 1) a 16-
bit special string SID, a custom identi�er for distinguishing
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UDP
Custom Identifier

(16) Summary (16)

Application ID (8)
# Per-Packet

Fwd (4)
# Periodical

Fwd (4)

Cookie 1
Name (Var)

Cookie 1 Value
(Var)

Cookie 2
Name (Var)

Cookie 2 Value
(Var)

Data 1 Name
(Var) Data 1 Value (Var)

......
Data Stack

......

AES-128
Encrypted

Figure 8. Custom aggregation packet design.

from regular UDP packets; 2) a 16-bit summary that con-
tains application-ID and the number of sub-cookies/data for
either per-packet forwarding or periodical forwarding, re-
spectively; 3) data-stack that contains # sub-cookies and
data. All data after the application ID are encrypted using
the AES-128 algorithm.
The extracted cookies and data encoded in the custom

aggregation packet from LarkSwitch and edge server to Ag-
gSwitch may be lost because UDP is used. We argue that
the bene�ts of using UDP overtake the loss. The loss here
is that less than 0.01%, i.e., the packet drop rate in today’s
WAN [17, 19, 24], of the cookies or data will be lost. In com-
parison, there are two major bene�ts. First, for short-term
analysis, which is the target for Snatch, the value of the data
is much higher when the data is available sooner. Dropping
one data point out of tens or hundreds of thousands will
not make a large di�erence to the distribution of the data,
and thus to the results. At the same time, the data is not lost
forever. For a long-term analysis, full and accurate results
can be obtained by syncing up the records at the web servers
or related databases. Second, implementing a retransmission
mechanism on programmable switches is non-trivial and
consumes scarce DRAM resources to keep the status. In-
stead, the resources can be used to o�oad more computation
and thus provide better speedup or support more applica-
tions. In conclusion, it is the best choice for Snatch to adopt
UDP for the custom aggregation packet.

B.4 Repeated Counting

One potential issue with periodical forwarding is that one
user might send multiple requests to the web server within
one period and thus cause repeated counting. While repeated
counting is needed in some scenarios, it can be avoided by
implementing a hash table or a Bloom �lter, which is widely
used in projects involving programmable switches [66, 73,
78].

C Scope of Snatch Applications

Here, we take Spark Streaming as a comparison to illustrate
what can be done for the in-network streaming analytics
(INSA). Indeed, INSA is not as �exible as Spark Streaming
because of the constraint on the programming model and
computational and storage resources. Our goal for INSA is to
assist with the streaming analytics and potentially complete

Table 1. Supported operations and related application with
in-network streaming analytics. N/A for not applicable, N
for not supported, Y for supported, and Y∗ for supported
with limitation.

DStream Method INSA Category

cache() N/A DStream-speci�c
checkpoint(interval) N/A DStream-speci�c
cogroup(other[, numPartitions]) Y∗ partition, table-join
combineByKey(createCombiner,
mergeValue, . . . )

Y∗ foreach

context() N/A DStream-speci�c
count() Y reduce
countByValue() Y reduce
countByValueAndWin-
dow(windowDuration, . . . [, . . . ])

Y window, reduce

countByWindow(windowDuration, slide-
Duration)

Y window, reduce

�lter(func) Y∗ foreach
�atMap(func[, preservesPartitioning]) Y∗ partition, foreach
�atMapValues(func) Y∗ foreach,
foreachRDD(func) Y∗ foreach
fullOuterJoin(other[, numPartitions]) Y∗ partition, table-join
glom() N/A DStream-speci�c
groupByKey([numPartitions]) Y partition, reduce
groupByKeyAndWin-
dow(windowDuration, . . . [, . . . ])

Y partition, window,
reduce

join(other[, numPartitions]) Y∗ partition, table-join
leftOuterJoin(other[, numPartitions]) Y∗ partition, table-join
map(func[, preservesPartitioning]) Y∗ partition, foreach
mapPartitions(func[, preservesPartition-
ing])

Y∗ partition, foreach

mapPartitionsWithIndex(func[, . . . ]) Y∗ partition, foreach
mapValues(func) Y∗ foreach
partitionBy(numPartitions[, partition-
Func])

N partition

persist(storageLevel) N/A DStream-speci�c
pprint([num]) N/A DStream-speci�c
reduce(func) Y∗ reduce
reduceByKey(func[, numPartitions]) Y∗ partition, reduce
reduceByKeyAndWindow(func, invFunc,
. . . [, . . . ])

Y∗ partition, window,
reduce

reduceByWindow(reduceFunc, invRe-
duceFunc, . . . )

Y∗ window, reduce

repartition(numPartitions) N partition
rightOuterJoin(other[, numPartitions]) Y∗ partition, table-join
saveAsTextFiles(pre�x[, su�x]) N/A DStream-speci�c
slice(begin, end) Y window
transform(func) Y∗ foreach
transformWith(func, other[, keepSerial-
izer])

Y∗ foreach

union(other) Y∗ table-join
updateStateByKey(updateFunc[, . . . ]) Y∗ foreach
window(windowDuration[, slideDura-
tion])

Y window
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relatively simple tasks alone, but not to entirely replace Spark
Streaming.
While Snatch handles multiple tasks, here we focus on

the “depth” of each task and hence assume to support only
one task. In the discussion of the feasibility to achieve a
function, we consider that modi�cations can be made at
either the compiling phase, i.e., modifying the P4 code, or
Snatch application submission phase, i.e., the application
developer encodes the cookies and sets up the corresponding
receiver at the analytics server.
In addition, because today’s P4 model only supports par-

tial integer operation (see “Statistics Calculation” in Sec-
tion 4.1), we limit the following discussion in the scope of
integer operations. Yet, it is noteworthy that it is possible
to perform counting operations for strings: The application
developer can either encode the string to integer or use a
dictionary when the value possibility is limited. In this way,
counting can be done by matching the hash value or the
keyword. Still, other string functions such as concatenate
are not supported. It is also noteworthy that the latest study
has demonstrated that it is viable to perform �oat operation
with programmable switches by carefully rescheduling the
computation procedure [101]. An alternative is to leverage
�oat number quantization [61].
A Spark Streaming program often executes a series of

DStream methods [22], e.g., map, reduce, etc, to a DStream
object, i.e., the data within an interval. For the sake of con-
venience of discussion, we classify the DStream methods
into several categories: DStream-speci�c, partition, foreach,
window, table-join, and reduce. A method may belong to
multiple categories at the same time. For instance, reduce-
ByKeyAndWindow belongs to three categories: partition, win-
dow, and reduce. Table 1 lists all the DStream methods,
whether they can be done with INSA, and their categories.
Indeed, the complexity of some DStream methods heavily
depend on the input functions, and whether INSA supports
such a DStream method depends on the input function, i.e.,
when the operands in the input function are supported by
programmable switches, the DStream method is supported
by P4, and vice versa. Moreover, the total number of DStream
methods that are operated on a DStream object is restricted
by the limited number of pipeline stages of the programmable
switches [29]. Below, we discuss the methods in detail by
category.
DStream-speci�c methods include cache, checkpoint,

context, glom, persist, pprint, and saveAsText-Files.
They are not applicable to INSA because they are speci�c for
assisting the Spark programmingmodel but not computation-
related operations. Related discussion involves fault toler-
ance, where more details are available in Appendix B.3.
Direct partition methods include partitionBy and re-

partition, whereas indirect partition methods, i.e., where
partition number is an optional input parameter, include

methods in foreach, window, table join, and reduce cate-
gories. To investigate these methods, we �rst need to un-
derstand more about the underlying data model of Spark
Streaming. Resilient Distributed Dataset (RDD) includes all
the streaming data within a batch interval from all partitions,
which refers to the data stored at one Spark node and is the
basic operable unit in Spark. In Snatch, each edge node, i.e.,
ISP switch or edge server, can be regarded as a partition
where data is stored. But unlike Spark, the data in each par-
tition depends on client location and activities, and cannot
be moved or reassigned in Snatch. Therefore, partitionBy
and repartition are not supported by INSA. However, op-
erations on the partition are possible: AggSwitch can set
up a match table for each edge node and perform di�erent
actions accordingly. The modi�cations should be made at
the compiling phase.
Foreach methods include combineByKey, filter, fore-

achRDD, map, flatMap, flatMapValues, mapPartitions, map-
Values, mapPartitionsWithIndex, transform, transform-
With, and updateStateByKey. The main purpose of these
methods is to allow operations at a �ner granularity, i.e.,
at per data point level. In INSA, the programmable switch
is processing at per-packet granularity. Therefore, foreach
methods are naturally supported by INSA while subjected to
input function, i.e., as long as the input function is supported
by INSA, the foreach methods are supported by INSA.

Direct windowmethods include slice and windowwhereas
indirect window methods, i.e., where window settings are
optional input parameters, include methods in reduce cate-
gories. Method window provides �exibility by allowing the
user to extract a new windowed DStream based on the ex-
isting DStream but with a di�erent interval. Method slice is
similar but only needs aggregated data within one interval.
The periodical forwarding in Snatch is similar to window
methods as it returns data on windowed packets. In the
same spirit, Snatch is able to realize both direct and indirect
window methods by achieving another periodical forward-
ing with a second time counter registers. The modi�cations
should be made at the compiling phase.
Reduce methods include count, countByValue, count-

ByValueAndWindow, countByWindow, groupByKey, group-
ByKeyAndWindow, reduce, reduceByKey, reduceByKeyAnd-
Window, and reduceByWindow. Among them, count and group-
ByKey and their associated methods can be regarded as spe-
cial cases for reduce and associated methods, and they have
been implemented in our Snatch prototype. Reduce and as-
sociated methods �t in the match and action programming
model, and thus should be supported by INSA as long as
the input function is supported by INSA. The modi�cations
should be made at the compiling phase.

Finally, table-join methods include cogroup, join, full-
OuterJoin, leftOuterJoin, rightOuterJoin, and union.
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These methods correspond to SQL join clauses which com-
bine the columns from one ormore tables. Snatch’s cookie/data-
stack has very similar data structure from tables, and techni-
cally it is possible to perform the join method at AggSwitch
by storing all the cookie/data from periodical aggregation
packets (representing DStreams) in the switch and then con-
struct another custom packet as a result of join and deliver it
to the analytics server. For instance, we take the fullOuter-
Join as an example. Stream 1 has cookies A, B, C whereas
Stream 2 has cookies A, D, E. AggSwitch reserves a register
space for a table with columns A, B, C, D, E. When collect-
ing periodical aggregation packets from LarkSwitches, what
AggSwitch needs to do is simply �ll in the registers accord-
ing to the value in cookie A. Thus, when all the periodical
aggregation packets are received, AggSwitch has a full table
of the result of fullOuterJoin on Stream 1 and 2. Other
table-join operations can be done in a similar spirit. Here, the
modi�cations should be made at both the compiling phase
and the application submission phase.
Note that table-join methods might be bene�cial when

applying to two separate applications per the developers’
agreement, which is a topic we plan to explore in future
work. Otherwise, it is a bad practice since it costs too much
of the switch storage resources and a better design of the
cookie/data-stack will remove the necessity for the join op-
eration.

D More Measurement Results

D.1 Methodology and Delay Derivation

Snatch involves several components: the ISP switch, edge
server, web server, and analytics server. To study the perfor-
mance of these subjects in practice, we set up experiments
as follows. First, we host two HTTPS websites with separate
domains using AWS EC2 instances [7], which represent the
web servers in Figure 1(b). Then, we purchase CDN services
from Cloud�are [12] and AWS Cloud Front [14], respectively
for each domain. This allows us to set up the edge servers
on a global scale.
Next, we adopt the decentralized VPNs (dVPNs) as our

means of measurement. We iteratively connect to all the
available residential dVPN nodes. For each connection, we
performmeasurements as follows. First, we perform tracer-

oute to our hosted domains, which retrieves the hops along
the path to the destination with RTTs to each hop. A dVPN
connection creates a VPN tunnel between the client and the
proxy, which all the packets traverse through. Thus, the �rst
hop will be the dVPN proxy itself, meaning that the delay to
the �rst hop is the delay between our machine and the dVPN
proxy. Because we want to measure the delays between the
destinations and the dVPN proxy, we accordingly subtract
the delay of the �rst hop for all the other measured delays.
We then investigate the next hops in increasing order.

When the hop’s IP is not private (judged by the pre�x of IP

address) for the �rst time, we consider it to be the �rst hop
reaching the ISP, and record the associated delays. When
we do not �nd the ISP in the �rst 10 hops, either because
all are private IPs or the hop is not available to traceroute
(“*” is returned), we consider the host not to be residential,
i.e.,miscategorized by Mysterium, and discard the associated
results.

Next, we investigate the delays between the dVPN proxy
and the edge servers and cloud by performing ping to cor-
responding destinations. For edge servers, we perform ping
to our domains. Because of the CDN services, the packets
will be directed to Cloud�are CDN servers or Amazon edge
servers instead of our EC2 instance in the cloud. In addi-
tion, we look up for, and ping, o�-net servers that are in the
same AS as the proxy, using the recently published database
[60]. We record all the associated delays. For clouds, we per-
form ping to the IPs of our EC2 instances, as well as public
servers in every AWS cloud region. We also measure the
AWS inter-cloud delays following cloudping [13].

Further, we perform HTTPS GET and POST requests to
our domains and the IP addresses of our EC2 instances. For
POST requests to our domains, the CDN service will forward
them to web servers by default. Along with the delays we
measured using ping, we can infer the time cost of handling
GET and POST requests by the edge and web servers, as well
as the delay from the edge server to the cloud.

For all the per-site operations mentioned above, we iterate
10 times and take the median for further analysis to avoid
outliers resulting from unstable network conditions.

D.2 Best-Practice Assumption

When the web server and the analytics server are not in the
same data center, the delays from the client and from the
edge to them (3��, 3�, , and 3��) change as 3,� changes.
For the sake of simplicity, we assume the best setup practice:
edge servers are set up globally for caching static content;
the web servers are set up in all data centers for serving
dynamic content; and one centralized analytics server is
located at one data center. In this way, the client will always
choose the closest edge and web server. In particular, the
delay from the edge to the web server (3�, ) is approximated
by taking the di�erence between the delays from the client
to the closest cloud and from the client to the edge server,
whereas the delay from the edge to the analytics server (3��)
is represented by the “Edge-Cloud” curve in Figure 5(a).
In Section 5.1, we consider the delays from the client to

edge (3�� ) and from the edge to the web server (3�, ) to be
constant as the median values. In Section 5.2 where the # th
percentile of delay is adopted, we take the # th percentile of
3�� and3�, as well. Importantly, we further assume that the
delay from the client and from the edge to the analytics server

(3�� and 3��) grows proportionally as the delay from the web

server to the analytics server (3,�) grows, within their own
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