
QFaaS: Accelerating and Securing Serverless Cloud
Networks with QUIC

Kaiyu Hou
Northwestern University, USA
kyhou@u.northwestern.edu

Sen Lin
Northwestern University, USA
sen.lin@u.northwestern.edu

Yan Chen
Northwestern University, USA
ychen@northwestern.edu

Vinod Yegneswaran
SRI International, USA
vinod@csl.sri.com

ABSTRACT
Serverless computing has greatly simplified cloud program-
ming. It liberates cloud tenants from various system admin-
istration and resource management tasks, such as configura-
tion and provisioning. Under this new cloud computing para-
digm, a single monolithic application is divided into separate
stateless functions, i.e., function-as-a-service (FaaS), which
are then orchestrated together to support complex business
logic. But there is a fundamental cost associated with this
enhanced flexibility. Internal network connections between
functions are now initiated frequently, to support server-
less features such as agile autoscaling and function chains,
raising communication latency. To alleviate this cost, cur-
rent serverless providers sacrifice security for performance,
keeping internal function communications unencrypted.
We believe that the emerging QUIC protocol, which has

secured and accelerated HTTP communications in the wide
area, could proffer a solution to this challenge. We design a
QUIC-based FaaS framework, called QFaaS, and implement
it on the OpenFaaS platform. Our design explicitly ensures
that existing serverless applications can directly benefit from
QFaaS without any application code modification. Experi-
ments on synthetic functions and real-world applications
demonstrate that QFaaS can reduce communication latency
for single functions and function chains by 28% and 40%,
respectively, and save up to 50 ms in end-user response time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’22, November 7–11, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9414-7/22/11.
https://doi.org/10.1145/3542929.3563458

CCS CONCEPTS
• Networks→ Cloud computing; Transport protocols; Net-
work performance analysis; Security protocols.

KEYWORDS
Serverless computing, Cloud networking, Serverless network
performance and security, QUIC protocol
ACM Reference Format:
Kaiyu Hou, Sen Lin, Yan Chen, and Vinod Yegneswaran. 2022.
QFaaS: Accelerating and Securing Serverless Cloud Networks with
QUIC. In Symposium on Cloud Computing (SoCC ’22), November 7–
11, 2022, San Francisco, CA, USA.ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3542929.3563458

1 INTRODUCTION
The rapid evolution of lightweight virtualization technology
has spawned the rise of the serverless cloud computing par-
adigm [11, 17, 34]. In serverless computing platforms, cloud
providers assume responsibility for all server-related man-
agement tasks, including both hardware resource allocation
and software runtime preparation. Cloud software develop-
ers are thus free to simply focus on designing small discrete
stateless functions and orchestrating them together for their
high-level business logic.

Among the major allures of serverless computing is agile
autoscaling. It allows service providers to quickly launch new
function instances in response to end-user requests, while
saving operational costs. Since auto-scaled instances can be
quickly destroyed by cloud providers, tenants only pay for
the actual function execution time and do not need to reserve
resources for burst requests. Because of both efficiency and
economic advantages, serverless computing garners exten-
sive attention from industry and is expected to become the
dominant cloud computing paradigm [34]. Its market share
is projected to surpass $21 Billion by 2025 [47].
Serverless computing is fundamentally a network-based

cloud computing paradigm. Thus, optimizing the perfor-
mance and security of serverless networking is arguably
as crucial as existing research efforts on other aspects such

https://doi.org/10.1145/3542929.3563458
https://doi.org/10.1145/3542929.3563458

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Kaiyu Hou, Sen Lin, Yan Chen, and Vinod Yegneswaran

as performance optimization of serverless platforms [1, 15,
33, 56, 66, 69, 78, 80] and security management of cloud func-
tions [3, 23, 64]. Furthermore, the zero trust security model
has gained considerable momentum among cloud security
communities [48, 63]. Under this principle, any entities, even
within the same internal network, should not be trusted by
default. Therefore, fully encrypting all internal connections
is now the best practice for major cloud providers [8, 29, 51].
Although initiating reliable transportation and encryption
introduces extra delays, it is not the dominant performance
bottleneck in traditional cloud computing: (𝑖) transmission
delay within the data center is negligible compared to exe-
cution times; (𝑖𝑖) connection setup latency of TCP and TLS
can be simply mitigated by using persistent connections.
However, many leading commercial serverless providers

and open-source serverless frameworks still use bare (un-
encrypted) TCP connections between functions, leaving a
potential attack surface [1, 10, 30, 52]. This is due to new
challenges that arise specifically in serverless networks. First,
with serverless computing, a function instance can be ini-
tialized in milliseconds (less than 125 ms for cold-start on
AWS [1]) and only processes a small sliver of the computa-
tional task (849 ms median execution times on Azure [65]).
The latency introduced by TCP and TLS handshakes, even at
the sub-millisecond-scale, should no longer be ignored [33].
Second, with the scale-zero-to-infinity feature [17], function
instances are quickly scaled up and down by cloud providers.
It is thus tough to maintain persistent connections between
ephemeral functions. Third, as serverless functions are com-
monly chained together to form task-specific workflows [64],
cumulative handshakes exacerbate the end-to-end latency.

In this paper, we raise the following question:Canwe seam-
lessly enable secure and accelerated network communications
for serverless cloud applications? To address this question, we
design and implement a novel solution based on the emerg-
ing QUIC protocol, called QFaaS, which can simultaneously
improve performance and provide security to existing server-
less platforms without the requirements of any tenant code
modification.
QUIC [60] is a new transport protocol that has steadily

gained popularity on the wide-area Internet [77], particu-
larly for web and video streaming [39]. QUIC combines the
advantages of both TLS 1.3 and UDP to provide a secure
and reliable transport layer with 0-RTT (round-trip time)
connection setup cost, i.e., data packets may be sent without
an explicit handshake. QUIC has also been successfully ex-
tended to some other scenarios, such as IoT meshes [26, 38],
satellite communications [75], and Tor transports [12, 13].
Due to the inherent advantages of reduced handshake costs
while providing a secure network, it is appealing to adapt
this new protocol to securely address communication per-
formance bottlenecks in emerging serverless networks.

Contributions. Our paper proceeds by first providing a
network-centric view of serverless applications, filling in
missing details about actual network flow in the widely used
logic view. This inspired the design of our QFaaS system,
where the QUIC protocol can be seamlessly integrated into
serverless platforms, to mitigate connection setup overheads
and provide secure communications. Our design explicitly
ensures that existing serverless applications can be migrated
to QFaaS without any code modification. In addition, server-
less applications can be further accelerated by using our
function chain library and always-on 0-RTT design. (§3)
We implement the QFaaS prototype into OpenFaaS, the

most popular open-source serverless platform, and the sys-
tem is designed to be easily extensible to contemporary com-
mercial and open-source serverless platforms. The entire
system code is made publicly available. (§4)
Our experimental highlights include: (i) QFaaS can re-

duce the single function and function chain response latency
by 28% and 40% respectively compared with the state-of-
the-art serverless platforms. (ii) Upon deploying real-world
serverless applications to QFaaS, the end-user response time
reduction is up to 50 ms. (iii) In certain scenarios, QFaaS was
even faster than other platforms using only insecure TCP
connections. (§5)

2 BACKGROUND AND MOTIVATION
We provide the background of serverless computing in §2.1.
We then discuss the necessity of internal connection encryp-
tion and the status quo of serverless computing in §2.2. §2.3
demonstrates that the connection setup latency is a new chal-
lenge for serverless networks, which motivates our research.

2.1 Serverless Computing
In serverless computing, traditional applications are decom-
posed into small code slices, called functions. These state-
less functions then can be orchestrated by tenants to per-
form their high-level business logic, which is also known as
the function-as-a-service (FaaS) model. In comparison with
the infrastructure-as-a-service (IaaS) model, in FaaS, it is no
longer incumbent upon the tenants to manage the life cycle
of virtual machines (VMs) or the deployment of software
stacks. Cloud platform providers undertake all server-related
tasks, such as launching VMs, provisioning container clus-
ters, and preparing programming runtimes. From the tenants’
perspective, the cloud development and deployment tasks
are not server-centric, and thus called “serverless”.
The rapid evolution of virtualization technology, espe-

cially container technology, is the basis for the emergence
of serverless computing. The FaaS model introduces a novel
capability to cloud computing: agile auto-scaling without ex-
plicit tenant provisioning. Specifically, stateless functions are

QFaaS: Accelerating and Securing Serverless Cloud Networks with QUIC SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

usually deployed in lightweight virtualized environments,
such as containers. They can be initialized within just a few
milliseconds. Therefore, serverless providers can quickly
scale the number of running function instances in response
to changes in incoming request patterns, in a manner that is
automatic, continuous, and completely transparent to ten-
ants. This feature also provides certain inherent economic
advantages. Since the allocated resources can be released
soon by the cloud providers when they are not in use, ten-
ants will not be charged for idle time and only pay for actual
function execution time, i.e., billing-based-on-usage model.
In effect, the price of handling one thousand burst requests
in parallel is roughly the same as the price of handling one
thousand requests at low density.

Meanwhile, backend-as-a-service (BaaS) is another impor-
tant component of serverless computing [34]. Cloud providers
can provide stateful services, such as data storage, event log-
ging, and identity management, to cater to the rapid devel-
opment of serverless applications.

2.2 Connection Encryption for Zero Trust
Cyber threats emanate not only from tenacious attackers
outside the data center but also other insidious entities shar-
ing infrastructure within the same data center. Due to the
lack of encryption on internal communication, early-stage
data centers exposed extra attacking surfaces to adversaries,
leading to several publicized security disasters [36, 62]. Con-
sequently, the zero trust security model came into being.
In the zero trust model, no entities should trust each other
by default; hence authentication and encryption are always
desired. This model has gained popularity in most cloud
computing paradigms, such as IaaS and newly-emerging
microservices, which dedicates TLS encryption to all con-
nections to be the best practice [8, 29, 51].

Nevertheless, even in those leading commercial serverless
platforms, due to the network performance restriction (de-
tailed in §2.3) and the early stage of development, the lack
of traffic encryption between internal serverless function
communications is still the status quo.
For instance, dedicated traffic encryption is provided by

default to most services within AWS data centers [7, 8]. How-
ever, for the Lambda serverless computing service [5], AWS
only provides traffic encryption in connections between end-
users and the Lambda function invoker. The connections
between the function invoker and function workers remain
unencrypted [1, 10]. Other popular commercial providers,
such as Google Cloud and Azure, also do not encrypt the
function invoker to function worker connections. In addi-
tion, Azure does not require encryption in the gateway to
function invoker connections [52] and Google Cloud even

allows end-users to trigger serverless functions through the
gateway via insecure HTTP requests [30].
Traffic encryption is also not prevalent in open-source

serverless platforms. For example, OpenFaaS [42], the most
popular open-source serverless platform, disables all traf-
fic encryption by default. Users must manually enable TLS
1.2 encryption in OpenFaaS, which will, however, signifi-
cantly impact its network performance, as we show in the
evaluation (§5).
Virtual Private Cloud (VPC) is the prevalent solution for

IaaS network security. It provides a virtual isolated network-
ing environment in public clouds. However, VPC has several
drawbacks when applied to serverless platforms. First, the
initialization performance of VPC cannot meet the rapid
scaling requirements of serverless computing environments.
For instance, the initialization of AWS VPC interfaces takes
15 to 90 seconds, and this cost has to incur per cold-start
serverless function call. With this realization, AWS disables
tenant VPC for Lambda by default, and hyperplane VPC in-
terface sharing was recently announced; however, that still
incurs a one-second overhead [6]. We make the case that
such delays are prohibitive for serverless functions that ini-
tialize and execute at millisecond scales. Additionally, the
economic advantages of serverless computing come from
efficient hardware multiplexing among tenants. However,
exploiting this architectural flexibility limits opportunities
for pre-binding tenant VPCs to hardware resources. Finally,
VPC is arguably targeted more toward traffic isolation than
encryption. Specifically, cloud providers typically enforce
traffic encryption between VMs (e.g., AWS EC2) in the same
VPC but not other services due to the hardware and design
restrictions [8, 29]. Therefore, VPC is not the off-the-shelf
solution for serverless encryption.

2.3 Connection Setup Latency: New
Challenge

Internal communication delay was not a significant prob-
lem in traditional monolithic applications. Threads within
the same process shared the same view of virtual address
spaces and inter-process communication (IPC) provided con-
venient mechanisms (e.g., signals, pipes, and shared memory)
for different processes to exchange data efficiently. Cloud
computing paradigms increased flexibility in application de-
sign and deployment, by breaking up monolithic application
stacks into independent services. Nevertheless, there was
often some additional cost associated with such flexibility.

In practice, disparate services are commonly deployed in
isolated VMs for ease of management. Internal messages
between them now must go through a complete network
stack, raising communication latency. Such distributed ser-
vice orchestration also introduces connection setup latency.

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Kaiyu Hou, Sen Lin, Yan Chen, and Vinod Yegneswaran

ServerServerServerClient Client Client Server Client

(a) TCP
Handshake

(b) TCP+TLS 1.2
Handshake

(C) QUIC 1-RTT
Handshake

(d) QUIC 0-RTT
Handshake

Scheme TCP TCP + TLS 1.2 QUIC 1-RTT QUIC 0-RTT

New Session 1 3 1 -

Recover Session 1 2 1 0

Figure 1: Round-trips in different transport protocols:
(a) insecure TCP incurs 1 extra RTT; (b) in TCP+TLS 1.2
scheme, the encrypted request is sent after 3 RTTs; (c) in
QUIC 1-RTT mode (new session establishment), the en-
crypted request is sent after 1 RTT; (d) in QUIC 0-RTT (ses-
sion resumption), the encrypted request is sent immediately.

Specifically, TCP and TLS are used to provide reliable and
secure connections between VMs. Both of them require extra
round-trips when initiating new connections, as shown in
Figure 1 (a) and (b). But such initialization delays were not
a severe drawback in cloud computing until the advent of
serverless computing. First, maintaining persistent connec-
tions among services can partially mitigate the connection
setup latency. Though this solution cannot eliminate the de-
lay after launching a new VM, the connection setup latency
is still negligible when compared with the VM initiation
time. Second, TCP, the dominant protocol for reliable net-
work communication, has been ossified into the OS kernel
and is not easily replaceable. Thus, other problems in cloud
computing, like scheduling, elastic scaling, and storage, were
prioritized over optimizing connection setup latency.

In contrast, the scale-zero-to-infinity feature of serverless
exponentially magnifies the disadvantages of connection
setup latency. To be specific, in serverless computing, (i) since
the initiation and execution times for function instances are
minuscule, the connection setup time is no longer negli-
gible. (ii) In addition, the number of running function in-
stances rapidly scales up and down in response to the re-
quest changes. It is now not possible to maintain persistent
connections between these stateless function instances. (iii)
Finally, as functions are usually chained together to form
task-specific workflows, connection setup costs are incurred
at each hop of the function chain, significantly compound-
ing the non-negligible delay. To address these challenges,
always keeping at least one instance of each function alive
could be a compromise solution (which became an option
on AWS Lambda recently). However, such a solution largely

increases the tenants’ cost and violates the serverless philos-
ophy to some extent. Meanwhile, it still suffers from burst
requests. We believe that there is now a greater urgency to
prioritize the optimization of connection setup latency in
cloud network communications.

3 QFaaS: SYSTEM DESIGN
QFaaS leverages the emerging QUIC protocol to accelerate
and secure serverless computing. §3.1 introduces QUIC and
emphasizes its benefits for serverless. We then provide a
clear network abstraction for serverless applications to iden-
tify potential network bottlenecks in §3.2. We describe the
system architecture of QFaaS in §3.3, which requires no code
modification for existing serverless applications. Designs in
§3.4 and §3.5 can further accelerate serverless networking.

3.1 QUIC Protocol for Serverless Networks
QUIC has been quickly and widely adopted on the wide-
area Internet after demonstrating the ability to mitigate sev-
eral drawbacks of TCP (e.g., performance, evolvability). Af-
ter 2017, more than 7% of Internet traffic (a major part of
Google’s egress traffic) is under QUIC [39]; in 2021, 5.1%
of all websites over the world are using QUIC [77]. QUIC
has been standardized by IETF (Internet Engineering Task
Force) in RFC 9000 in May 2021 [60]. Furthermore, IETF has
just standardized HTTP/3, “HTTP over QUIC”, as the next
generation HTTP protocol in June 2022 [14]. With rising
demand for low latency applications, QUIC gains growing
popularity and is likely to outpace TCP on the Internet in
the near future.

We think that QUIC can likewise evolve communications
in serverless computing as it provides a robust pathway to
improve security and performance. On the one hand, cloud
users seamlessly benefit from the security of QUIC as it is
coupled with the latest TLS 1.3 protocol to provide always-on
encryption by design. On the other hand, QUIC can achieve
0-RTT shaving both transport and cryptography handshakes,
meaning the first encrypted data packet could be sent before
any handshake happens. First, QUICmitigates the handshake
overhead in the TCP protocol, as it provides a reliable mul-
tiplexing transport on top of UDP instead of TCP. Second,
QUIC further leverages the 0-RTT resumption feature in TLS
1.3. Consequently, QUIC only requires 1 extra round-trip
(1-RTT mode) to set up the connection when the client never
connected to the server before (Figure 1 (c)). The first en-
crypted data packet can be sent immediately (0-RTT mode) if
the client cached the server information in previous connec-
tions (Figure 1 (d)). Thus, QUIC has the potential to greatly
reduce the connection setup latency in serverless computing,
especially when new function instances are instantly scaled
up and chained together to support burst requests.

QFaaS: Accelerating and Securing Serverless Cloud Networks with QUIC SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

We notice that QUIC is even better suited for serverless
computing environments than the wide-area Internet in
some respects. First, enabling QUIC requires modifications
on both client- and server-side software to install relevant li-
braries with compatible versions, which is challenging when
the two sides are controlled by different entities. In server-
less computing, as cloud providers prepare all the software
stacks, including networking-related stacks, software com-
patibility is no longer an issue. We can further leverage this
capability to ensure the always-on 0-RTT (§3.5). Second, the
QUIC performance is suffering from the UDP traffic throt-
tling by public Internet service providers. Nevertheless, this
is less of a concern within data centers. Third, the 0-RTT
replay attack is another concern when using QUIC on the
Internet [16]. If it is possible to monitor connections and sniff
packets in the middle, the adversary can potentially resend
the first client packet to trigger the related request twice
on the server-side. Though, performing this attack requires
strict conditions, which are harder to achieve inside a data
center, we further implement a more secure QFaaS prototype
by sending all non-idempotent requests through 1-RTT to
mitigate the threat of the 0-RTT replay attack (§4.2).
In addition to security and low latency, using QUIC in

serverless networks can also provide many of the same ben-
efits as using it on the Internet. For example, QUIC supports
stream multiplexing in one connection. It avoids head-of-
line blocking delays due to the TCP’s sequential delivery.
Besides, as QUIC runs in the user space instead of the kernel,
the transport layer is now more malleable to meet evolv-
ing application demands with frequent updates, such as a
notable recent breakthrough: Pluginized QUIC [24].

TCP Fast Open (TFO) [79] is a potential competitor to
QUIC [18]. It allows the application data attached to the
client SYN packet to avoid the TCP handshake latency if the
SYN packet contains an identifier (TFO cookie) from the last
connection. Though TLS 1.3 (0-RTT) over TFO theoretically
provides the same round-trip performance as QUIC, because
of several deep-rooted privacy and performance issues, TLS
over TFO has been disabled on all modern browsers (e.g.,
Chrome, Firefox, and Edge) and is not yet actively used by
most popular operating systems after 10 years [70]. First, TFO
relies on a unique unencrypted cookie in the TCP header,
which leads to severe tracking concerns on the public Inter-
net. In addition, enabling TFO requires updating all middle-
boxes in data centers, such as firewalls, proxies, and security
devices, to support a non-originally designed TCP option.
Nevertheless, these network core devices are ossified in the
network and rarely updated. Consequently, failed TFO re-
quires an ordinary TCP SYN retry, leading to TFO actually
increasing round-trips. In contrast, QUIC runs over UDP and
only requests updates on end devices. Finally, only messages

which are smaller than the MTU (i.e., those that may be em-
bedded in the TCP SYN payload) will benefit from the TFO,
while the entire client-initialized message (spanning multiple
packets) can benefit from QUIC’s 0-RTT feature. Therefore,
we advocate for QUIC over TFO in the QFaaS design.

3.2 Modeling Serverless Networks
To use QUIC in serverless computing, the first challenge is
to identify network connections in its architecture. Though
the logic abstract model of serverless platforms is commonly
used, important details were missed with respect to the net-
work modeling. We address the limitations by providing a
new abstraction of the serverless architecture through the
network-centric view. This model will guide our QFaaS sys-
tem design.

Logic Model. General discussion about serverless architec-
tures is commonly framed in the context of the logic view,
shown in Figure 2 (a). Under this abstraction, a unified API
Gateway continuously listens for end-user requests. Upon
receiving a function invocation, Gateway first executes per-
mission authentication and scales corresponding function
instances. Gateway then forwards the user request to a func-
tion instance behind it. Functions chained together with
backend services compose an integrated serverless applica-
tion and perform cloud tenants’ business logic.
While the logic model largely simplifies the connection

details, such that one can quickly understand the essential
concepts of serverless computing, it does not reflect actual
network flows. There are two important details missed: (i)
after the end-user sends a function request to Gateway, the
response of this function (F𝐴 or F𝐶) is returned through
Gateway instead of directly by the function; (ii) in function
chains, when a function (e.g., F𝐴) sends a request to another
function (F𝐵), this request must also go through Gateway.
Because only Gateway can launch new instances of functions,
and knows the destination address of their running instances.

Network-centric Model. To address the aforementioned lim-
itations, we provide a new abstraction of the serverless ar-
chitecture through the network-centric view (Figure 2 (b)).
In this model, the serverless architecture is divided into two
parts: the gateway subsystem and the workers subsystem.
• Components in the gateway subsystem expose static func-
tion interfaces to end-users, manage running workers,
and dispatch requests to corresponding functions. These
services are all stateful and run on permanent machines. In
existing serverless platforms, corresponding modules may
have variant names. For example, in AWS, they are called
frontend and worker manager; in OpenFaaS, they are
called api-gateway and faas-netes controller. Regard-
less of the names, they provide the same functionality.

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Kaiyu Hou, Sen Lin, Yan Chen, and Vinod Yegneswaran

API
Gateway

End-User

1

8
Function
Invoker

Function B
Go-lang Runtime

Req Handler

W
o

rke
r 2

Function A
Python Runtime

Req Handler

W
o

rke
r

1

FA

FA FB

2 FA

7 FA FB

3 FB

6 FB

4 FB

5 FB

Gateway Workers

\
FD

API
Gateway

Storage
Service

Task
Scheduler

Serverless Application

End-User

FC

FA FB

(a) Serverless Architecture in Logic View (b) Serverless Architecture in Network-centric View

: Functions : Backend Services: Events : Request : Response : Inner Channel
1 FA

8 FA

Figure 2: Serverless Architecture. (a) Logic Model. Gateway forwards end-user requests to corresponding functions.
Functions chained together with backend services compose a serverless application. However, network details are missing:
(i) function results are returned through Gateway to end-users, (ii) functions are chained through Gateway, i.e., no direct
connections between end-users and ephemeral function instances, and between two instances. (b) Network-centric Model.
Gateway components run permanently, expose function interfaces, manage running workers, and dispatch requests. Workers
run on ephemeral containers, host request handlers and different language runtime for functions. The request handlers can
only be connected by Gateway.

• Workers are ephemeral containers that comprise the re-
quest handler, the function runtime, and tenant function
code. The request handler provides the internal communi-
cation ability for workers. It receives trigger requests from
Gateway and sends function results back to Gateway. The
function runtime provides isolated software stacks and
programming language libraries to execute tenant func-
tion code. Therefore, tenant functions are decoupled from
the management of ingress network connections. Hence,
the request handler can be designed independently by
serverless providers.
Figure 2 (b) shows an example where an end-user requests

the service of function F𝐴, while F𝐴 chained together with
F𝐵 provides the service to the end-user. In this example,

• (➊|➑) the end-user sends F𝐴 a request (➊) and receives
responses of F𝐴|F𝐵 (➑) from the direct connection with
API Gateway. In the process, Gateway acts as a transport
layer server, listening and responding to user requests.
Network details behind it are transparent to the end-user.

• (➋|➐) API Gateway forwards the F𝐴 trigger event to Func-
tion Invoker. After the F𝐴 worker is initialized, Function
Invoker sets a connection to the request handler in F𝐴
worker, sends request data (➋), and receives responses
(➐). In this process, Function Invoker plays the role of
the transport layer client to initiate this connection. The
request handler plays the role of the transport layer server.

• (➌|➏) F𝐴 needs the response of F𝐵 . Nevertheless, instead
of sending a request directly to a worker of F𝐵 , F𝐴 will send

the F𝐵 request (➌) and receive responses of F𝐵 (➏) from
Gateway. F𝐴 does not need to care about any scheduling
details of F𝐵 . In this process, Gateway acts as a transport
layer server again, even though the connection is internal.

• (➍|➎) Function Invoker initializes a worker for F𝐵 , sets
up a connection to its request handler, sends request data
(➍), and receives responses (➎) from this connection.

In current serverless platforms, HTTP (including REST-
API and gRPC) is commonly used application layer protocols
for connections to API Gateway (➊|➑, ➌|➏) and request
handlers (➋|➐, ➍|➎). These application layer protocols rely
on TCP and TLS protocols underneath to provide reliable
and secure transport communications. For security concerns,
connections involved API Gateway (➊|➑, ➌|➏), which ex-
poses interfaces to outside, are mandatorily encrypted by
most providers (§2.2). For other connections in Figure 2 (b),
the data exchange between request handlers and functions
in the same worker is through IPC with negligible overhead.
API Gateway and Function Invoker are usually deployed
in different machines. But they can maintain a persistent
connection to mitigate the connection setup overhead.

3.3 QFaaS System Architecture
We first identify connections that affect the serverless net-
work performance and can be seamlessly optimized without
tenants’ code modification. In our network-centric view, API
Gateway to Function Invoker connections and request han-
dler to language runtime connections could be persistent
or through IPCs. The connection between end-users and

QFaaS: Accelerating and Securing Serverless Cloud Networks with QUIC SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Gateway (➊|➑) is initialized by end-users and could also be
persistent. The connection from the function to Gateway
(➌|➏) is initialized by functions. In contrast, the connec-
tions from Gateway to workers (➋|➐, ➍|➎), which are fully
controlled by providers, expose opportunities to optimize
serverless networks.

First, function workers are instantaneously launched and
torn down in response to requests. We cannot simply use per-
sistent connections to mitigate the connection setup latency
for function workers. Second, this overhead will be multi-
plied when functions are chained together or the number of
running instances is quickly scaled up. Thus, these serverless-
introduced bottlenecks drive major cloud providers to sac-
rifice security for performance, keeping ➋|➐, ➍|➎ unen-
crypted (§2.2).
To accelerate serverless networking while maintaining

security, we introduce the design of QFaaS, as shown in
Figure 3. In this design, we integrate the QUIC client into
Function Invoker and also integrate the QUIC servers into
the worker request handlers (to replace the TCP and TLS
client and servers, respectively). All function requests that
go through Gateway to workers would now benefit from the
efficiency and security of the QUIC protocol.
On the one hand, QUIC embraces full encryption by de-

fault and employs the latest TLS 1.3 protocol. As a result,
connections from Gateway to workers would benefit from
security improvements provided by TLS 1.3. On the other
hand, this QFaaS design can ensure the activation of the
QUIC 0-RTT feature. To enable 0-RTT connection resump-
tion, QUIC leverages QUIC connection tokens and TLS session
caches stored on the client-side. In serverless architecture,
Gateway runs on stateful machines and plays the role of
the QUIC client in QFaaS. We integrate the QFaaS 0-RTT
Store into the Gateway to maintain and manage connection-
specific information. Therefore, serverless applications under
this design can further benefit from the 0-RTT feature.
Moreover, QFaaS design does not request any changes

to tenants’ function code. In serverless computing, all run-
ning containers, as well as the code of Gateway and request
handlers, are provided and controlled by cloud providers.
Modifications are transparent to cloud tenants and end-users.

3.4 Function Chain Library
An inquisitive reader might wonder why we did not further
replace the connection initiated from the function to Gate-
way (➌|➏) with QUIC? This is because such a connection is
function code related and programming-language specific.
Specifically, Gateway usually exposes URLs or REST APIs
for functions. End-users can invoke a function by sending
an HTTP request to the corresponding URL. Similarly, when
a tenant wants to invoke a function (F𝐵) by another function

Function A

Python Runtime

Request Handler
(REST-API HTTP Server)

API Gateway (REST-API HTTP Server)

QUIC Client

QUIC Server

P
yt

h
o

n

Function Invoker (HTTP Client)Gateway
Containers

W
o

rk
er

C
o

n
ta

in
er

Function B

Go-lang Runtime

Request Handler
(REST-API HTTP Server)

QUIC Server

G
o

W
o

rk
er

C

o
n

ta
in

er

QFaaS 0-RTT Store

Figure 3: System Design of QFaaS. QUIC client and QUIC
servers are integrated into Function Invoker and worker
request handlers to replace the TCP/TLS client and servers.
This modification is transparent to cloud tenants and ensures
the activation of the QUIC 0-RTT feature.

(F𝐴) to form a function chain, the tenant also must initiate
an HTTP request by the function code in F𝐴 and follows
the programming language practices. For example, AWS,
Azure, Google Cloud, and OpenFaaS all suggest Python users
form function chains by leveraging the Python Requests
library [35]. Therefore, such connections are not fully con-
trolled by the cloud providers and cannot be optimized as
described in §3.3.

One alternative way to enable QUIC at ➌|➏ is to provide
a QUIC server at Gateway and ask developers to integrate
a QUIC client in their function code. Nevertheless, this de-
sign requires significant code modification and also requires
developers to be familiar with QUIC client configurations.
Recent advancements in platform specific libraries allow

for an improved design. For fine-grained access control and
ease of use, some serverless platforms, such as AWS Lambda,
now provide libraries under different languages for tenants
to form function chains [9]. With such libraries, developers
can directly call platform APIs to invoke another function
instead of explicitly sending an HTTP request by the code.
Leveraging this idea, we provide a QFaaS function chain

library to enable QUIC at ➌|➏, requiring slight tenant code
modification. This chain library has QUIC as its underline
transport layer protocol. We integrate the QUIC server into
Gateway to accept function requests through QUIC. Thus, all
function chain traffic invoked by the library will benefit from
the short latency and security of QUIC. Currently, this li-
brary supports Python3 and Go-lang, which are two popular
programming languages used in all major serverless plat-
forms. The code modification to adapt this library is minimal.
For instance, the Python developers only need to import the
library and switch their Requests call to the QFaaS chain
library call, which are only 2 lines of code modification.
This design also has three side benefits. First, Gateway

now has the ability to accept QUIC requests. It is now possi-
ble for end-users to initiate a request by QUIC and further

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Kaiyu Hou, Sen Lin, Yan Chen, and Vinod Yegneswaran

accelerate the ➊|➑ connection. Second, this new ability will
not interfere with existing TLS Gateway functionalities, as
QUIC listens on the UDP port while TLS listens on the TCP
port. Third, the system can now be more easily integrated
with current serverless security and access control mecha-
nisms [3, 23, 64].

3.5 Always-on 0-RTT QUIC
QUIC is initially designed for the wide-area Internet, where
connection peers are controlled by different entities. On the
contrary, in serverless networks, providers can fully admin-
istrate the platform. Leveraging this ability, we propose the
Always-on 0-RTT QUIC design, which ensures the activation
of 0-RTT even for completely cold-start functions.
In the QUIC protocol, if the client has never connected

to the server, the first request will use 1-RTT mode, due to
the lack of pre-knowledge with the server. QUIC clients rely
on the QUIC connection token and TLS session cache from
previous handshakes to enable 0-RTT. The QUIC connection
token is used for servers to identify and verify the 0-RTT
connection from clients. The TLS session cache is indeed
the TLS pre-shared key (PSK) [25, 44], which is the basis for
0-RTT encryption.

We introduce a QFaaS 0-RTT Generator component in the
QFaaS design. When launching a cold-start worker (QUIC
server), the Generator will put a valid Function Invoker
(QUIC client) token into the worker, so the 0-RTT connec-
tion from Function Invoker can be accepted. In addition, the
Generator will also produce a unique PSK and insert it into
both sides, which will then be used for 0-RTT encryption.
As this process is a part of workers’ environment setup, it
will not introduce extra delay. After the handshake process
is complete, the server will provide a new token and session
to the client for the next 0-RTT connection using the QUIC
protocol. These will be stored in the QFaaS 0-RTT Store (§3.3).
This design utilizes the advantages of serverless computing
and is fully compatible with the QUIC protocol.

4 QFaaS: SYSTEM IMPLEMENTATION
We implemented the QFaaS prototype on OpenFaaS (§4.1)
and enabled the QUIC 0-RTT feature on it (§4.2). The QFaaS
design is easy to be extended to other platforms (§4.3).

4.1 QFaaS Prototype on OpenFaaS
We implemented our QFaaS into the popular OpenFaaS [42].
OpenFaaS is currently the leading open-source serverless
platform (sorted byGitHub stars [57]). It uses Docker contain-
ers to host all components and Kubernetes (K8s) to simplify
container deployment and management.

We extended quic-go [43] for our prototype. quic-go sup-
ports the recently standardized IETF QUIC [60]. And it is

implemented in Go-lang, the same language as OpenFaaS
and K8s, which makes them easier to be integrated. quic-go
also provides an HTTP/3 [14] implementation by assembling
QUIC with the Go-lang HTTP package (net/http).
We primarily modified two components of OpenFaaS:

faas-netes and of-watchdog.
faas-netes is the Function Invoker component in the

OpenFaaS platform that resides on Gateway. It controls the
life cycle of worker containers by sending commands to the
K8s master. It also works as an HTTP client, forwarding
function requests to corresponding workers through stan-
dard HTTP messages. We modified faas-netes, integrating
a quic-go HTTP/3 client module and coordinating it with
the remaining parts. All function requests then are proxied
and encrypted by QUIC when they are forwarded to workers.
All these modifications only introduce a minimal increase (15
MB) to the size of compiled faas-netes container images.
of-watchdog is a tinyHTTP server, working as the request

handler inside the function worker container. of-watchdog
uses an internal IP address and is only reachable within the
K8s cluster. It receives incoming function requests from faas-
netes and passes them on to the function. We reformed
the HTTP server module in of-watchdog to the quic-go
HTTP/3 server such that it can accept QUIC connections
from faas-netes and decrypt HTTP/3 messages. After at-
taching related packages for HTTP/3 and QUIC, the size of
of-watchdog executable file only increased by 3 MB.

Besides of-watchdog, an OpenFaaS worker container also
contains a language runtime and the tenant function code.
As the runtime is independent to of-watchdog, QFaaS inher-
ently support tenant function code in various languages with
its one-size-fits-all of-watchdog implementation. There is
no need to modify a specific language runtime.

To support QFaaS function chain library, we also installed
a QUIC server into the OpenFaaS api-gateway. It will re-
ceive and respond to all function invoke requests from the
function chain library and end-users using a QUIC client.
This modification does not interfere with exiting Gateway
functionalities as it listens on the UDP port.
We have open sourced our prototype implementation.1

In addition, we are working on integrating QFaaS as a plu-
gin into the OpenFaaS platform and collaborating with a
leading cloud provider to enable a proof-of-concept (PoC)
deployment of QFaaS in its serverless service.

4.2 QUIC 0-RTT Activation
To further enable the QUIC 0-RTT feature, we implemented
the QFaaS 0-RTT Store in faas-netes to maintain and man-
age the QUIC connection tokens and TLS session caches
for QUIC 0-RTT connections. With this implementation,

1https://github.com/qfaas-project

https://github.com/qfaas-project

QFaaS: Accelerating and Securing Serverless Cloud Networks with QUIC SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Python 3 Go-lang Java 11
0

100

200

300

Fu
nc

tio
n

Im
ag

e
Si

ze
 (M

B)

79

37

270

73

31

264

73

31

264

(a)
QFaaS
OpenFaaS(TCP)
OpenFaaS(TCP+TLS)

Python 3 Go-lang Java 11
0

20

40

60

Fu
nc

tio
n

Bu
ild

 T
im

e
(s

)

27 30

52

28
33

53

29
33

54

(b)

Figure 4: (a) Function image sizes and (b) image build
time using different of-watchdogs and language runtimes.

scenarios, such as the function warm-start, resuming sus-
pended workers, and processing non-continuous requests,
will benefit from the performance of QUIC 0-RTT.We further
implemented the QFaaS 0-RTT Generator in the K8s control
component. It generates and distributes the 0-RTT connec-
tion informationwhen a cold-start worker is launching. Thus,
the cold-start scenario will be accelerated by 0-RTT.
The replay attack [16] is a major security threat when

using QUIC’s 0-RTT mode. Under sophisticated settings,
an adversary could potentially replay the first 0-RTT mes-
sage to trigger the corresponding action twice on the server
[25]. To be specific, man-in-the-middle (MITM) sniffing and
packet replay are two necessary conditions for the QUIC
0-RTT replay attack. As for QFaaS, on the one hand, internal
data-center networks have different characteristics than the
public wide-area Internet. Both conditions may be harder to
achieve inside a data center. On the other hand, to provide a
higher security level, following the suggestions of [25, 60],
we provided a more secure QFaaS option, which manda-
torily sends all non-idempotent [61] requests (e.g., POST)
through 1-RTT. This option further mitigates the threat of
the 0-RTT replay attack. Users can make choices in QFaaS
based on their security needs. Additionally, recent cryptog-
raphy research [31] also shows that it might be possible to
support perfect forward secrecy during the 0-RTT key ex-
change process. We will show in our evaluation that even
when operating in 1-RTT mode, QFaaS is still considerably
faster than the OpenFaaS platform because it still requires
fewer RTTs than the TCP+TLS scheme.

4.3 Platform Universality
The QFaaS design is not only effective for OpenFaaS but
can also be easily extended to other serverless platforms.
This is because the network-centric model we provided is
universal to prevalent serverless architectures. For instance,
network flows in Lambda also follow this model. Specifically,
AWS revealed the Lambda architecture in [1]. Unlike Google
Cloud or OpenFaaS, AWS Lambda uses microVMs instead
of containers for function workers, where each worker also
contains a request handler (called _ shim) that listens to

HTTP requests from the Lambda Frontend. Thus the QFaaS
design can be directly applied in the Lambda architecture,
i.e., by integrating the QUIC server and client into the _ shim
and Frontend, and maintaining the QFaaS 0-RTT Store at
Frontend. In addition, Lambda now provides libraries for
access control and function chains [9]. QFaaS function chain
library can be implemented into it to further accelerate chain
communications.
QFaaS can also be easily migrated to other open-source

serverless platforms. Taking Apache OpenWhisk [73] as an
example, the ➋|➐ and ➍|➎ connections are essentially the
connections between OpenWhisk Controller and Code In-
voker that we can use QUIC to secure and accelerate. Addi-
tionally, we can apply the design of QFaaS function chain
library into special trigger events supported by OpenWhisk.

5 EVALUATION
We answer the following questions about QFaaS here. What
are our testbed and experiment settings (§5.1)? Will QFaaS
introduce extra overheads in building function images (§5.2)?
How does QFaaS perform on a single function in comparison
with TCP and TCP+TLS in different scenarios (§5.3)? How
does QFaaS react to variant intra-cloud delays (§5.4)? How
does the length of function chains impact QFaaS performance
benefits (§5.5)? And how well do the benefits transfer to real-
world serverless applications (§5.6)?

5.1 Testbed and Experiment Settings
We evaluate the performance of QFaaS using several syn-
thetic serverless functions and a real-world commercial server-
less application Hello, Retail! [53, 54]. These synthetic func-
tions are designed to cover different scenarios independently,
including simple echo functions, functions with large content
data, and function chains with variant lengths [81]. Hello,
Retail! is a popular open-source serverless application used
in many recent serverless studies [3, 23, 55, 64]. We use it to
assess the benefits that QFaaS can deliver in the real world.
We compare the performance of QFaaS with respect to

OpenFaaS, using TLS 1.2, for inter-component communica-
tions. We also measure the performance of OpenFaaS using
only bare TCP connections between components as a refer-
ence. Because TCP does not encrypt and decrypt packets,
it has a much shorter OS processing delay in comparison
to secure protocols. However, TCP-only OpenFaaS does not
provide any security for the cloud platform. We find that
our QFaaS design is even faster than TCP-only OpenFaaS in
some scenarios, while providing additional security.
All experiments were performed on our K8s cluster with

1 master node and 3 follower nodes. The K8s system com-
ponents were deployed in the master node. All OpenFaaS
related components were running in the follower nodes and

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Kaiyu Hou, Sen Lin, Yan Chen, and Vinod Yegneswaran

GET POST
Request Method

0

10

20

30

40

R
es

po
ns

e
La

te
nc

y
(m

s)

(a) Non-Continuous Request

GET POST
Request Method

0

10

20

30

40
(b) Continuous Request

OpenFaaS(TCP)
QFaaS
QFaaS(POST1RTT)
OpenFaaS(TCP+TLS)

GET POST
Request Method

10

20

30

40

50
(c) Initial Request

GET POST
Request Method

20

30

40

50

(d) Large Response Body (1MB)

Figure 5: Single function end-user response latency: (a) non-continuous requests require connection resumption. For
GET requests, QFaaS shows the same performance as insecure OpenFaaS (TCP) and is 28% better than OpenFaaS (TCP+TLS).
For POST requests, QFaaS in its 1-RTT mode is still 14% faster than OpenFaaS (TCP+TLS); (b) continuous requests have no
connection setup overhead. They all perform identically; when an (c) initial request is sent to a newly launched function, if
no session caches in Gateway, QFaaS is still 11% faster than OpenFaaS (TCP+TLS); in the (d) large response scenario, QFaaS
is slightly slower than OpenFaaS (TCP) due to encryption overhead. But it is still 21% faster than OpenFaaS (TCP+TLS).

each node has a 4x2.9 GHz CPU with 8 GB of RAM. All
Docker images were pre-pulled to avoid the influence of
external network variations. We also enabled the K8s local
DNS agent feature to improve cluster DNS performance.
We use the default MTU value of 1500 and keep all TCP,

TLS, and QUIC settings to be the default values from standard
Go-lang libraries (go1.15). A recent study [71] indicated that
QUIC could show better performance by MTU tuning. QFaaS
users can also potentially achieve better performance by
tuning protocol settings, such as congestion control scheme,
generic receive offload (GRO), and generic segmentation
offload (GSO) based on their traffic characteristics.

5.2 Function Image Overheads
Using QFaaS does not require any application code modifi-
cation. To migrate existing OpenFaaS application functions
to QFaaS, cloud providers only need to rebuild the function
container image on top of the modified of-watchdog. This
process can be done automatically and is transparent to ten-
ants. The function image size and function image build time
overheads are given in Figure 4 (a) and (b), respectively.
Results: Figure 4 (a) indicates that QFaaS only slightly

increases the container image size by 3 MB among each
different language runtimes. The increased size is due to the
additional libraries for QUIC server support. As shown in
Figure 4 (b), QFaaS only introduces negligible addition time
in building functions comparing with OpenFaaS.

5.3 Single Function Performance
We measure the response latency of several synthetic single
functions to show the benefits of QFaaS under different sce-
narios independently (Figure 5). Response latency represents
the time interval between the end-user sending the request

and receiving the complete function response. For GET re-
quests, we compare the latency between OpenFaaS (TCP),
QFaaS, and OpenFaaS (TCP+TLS). For POST requests, we
also measure the latency of QFaaS with mandatory 1-RTT
enabled, i.e., QFaaS (POST1RTT) (check §4.2 for more details).
In Figure 5 (a), (b), and (c), we all use a simple echo function
to avoid the jitter in function execution. The function used
in Figure 5 (d) returns a large response body of 1 MB when
called. We repeat each experiment 100 times. We use the
default intra-cloud delay of 0.5 ms. The QFaaS performance
under other delays is detailed in §5.4.
Results: Each box plot in Figure 5 (as well as Figure 10

and Figure 11) depicts the maximum, third-quartile, median,
first-quartile, and minimum through dash marks from the
top to the bottom.
As shown in Figure 5 (a), we first measure the scenario

that end-user requests sending in the no-continuous pat-
tern. In this case, whether TCP, TLS, or QUIC, connection
resumption is required. For GET requests, QFaaS performs
the same as insecure OpenFaaS (TCP) and is 28% better than
OpenFaaS (TCP+TLS). For POST requests, QFaaS working in
1-RTTmode is still 14% faster than OpenFaaS (TCP+TLS) and
achieves the same benefits as it performs on GET in 0-RTT
mode. The latency difference between QFaaS and OpenFaaS
(TCP+TLS) is larger than simply counting extra RTTs be-
cause extra handshake packets across protocol stacks at two
ends also introduce additional processing delays.
In Figure 5 (b), end-users continuously send requests to

avoid any connection resumption. All these implementations
perform identically. It indicates that QFaaS does not bring
additional overhead for this scenario.

In Figure 5 (c), we measure the first request latency when
a function instance is newly launched. In this scenario, we let
the QUIC client in faas-netes have no server session cache

QFaaS: Accelerating and Securing Serverless Cloud Networks with QUIC SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

 af-so
uth-1

 ap-east-1

 ap-northeast-1

 ap-northeast-2

 ap-northeast-3

 ap-south-1

 ap-southeast-1

 ap-southeast-2

 ca-central-1

 eu-central-1

 eu-north-1

 eu-south-1

 eu-west-1

 eu-west-2

 eu-west-3

 me-south-1

 sa-east-1

 us-east-1

 us-east-2

 us-w
est-1

 us-w
est-2

90%

50%

10%

6.3 2.5 3.5 2.7 2.5 2.5 2.5 2.9 3.0 2.7 2.7 2.5 2.5 2.6 2.6 2.4 3.3 4.0 4.3 2.7 2.5

4.1 1.2 2.1 1.5 1.3 1.3 1.2 1.8 1.7 1.8 1.8 1.2 1.1 1.5 1.2 1.1 2.0 2.5 2.5 1.3 1.4

0.9 0.6 0.8 0.7 0.6 0.6 0.6 0.9 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.9 0.7 0.5 0.6 0.6

Figure 6: AWS Lambda intra-region latency (ms) in the
10th, 50th, and 90th percentiles in one year. Source data
is collected from [49] between June 2021 to June 2022.

0 0.5 1 1.5 2 2.5 3
Internal Delay (ms)

20

40

60

80

R
es

po
ns

e
La

te
nc

y
(m

s) OpenFaaS(TCP+TLS)
OpenFaaS(TCP)
QFaaS

Figure 7: Benefits of QFaaS under variant intra-cloud
delays. QFaaS is always faster (17% reduction) than Open-
FaaS (TCP+TLS) even when the internal delay is 0. The re-
sponse latency difference increases as delays increase. QFaaS
starts to be faster than OpenFaaS (TCP) when delay>0.5 ms.

corresponding to the new function worker, thus working
in 1-RTT mode. In this case, QFaaS is still 11% faster than
OpenFaaS (TCP+TLS).

Figure 5 (d) shows the scenario when the function returns
a large body. The end-user needs to wait for several packets
before getting the complete response. In this scenario, QFaaS
is slightly slower than the insecure OpenFaaS (TCP) due to
traffic encryption and decryption overhead. But it is still
21% faster than OpenFaaS (TCP+TLS) when the size of the
response body is 1 MB.

5.4 Variant Intra-Cloud Delays
The end-user response latency reduction of QFaaS is related
to the intra-cloud delays. Because the QFaaS advantage over
OpenFaaS is obtained from reducing the number of RTTs in
the connection setup. The network delay within a typical
data center has been found to be around 0.5 ms in prior
studies [32, 41, 59]. In our evaluation, we set the default delay
between cluster nodes to 0.5 ms. One may notice that the
AWS EC2 ping delay is sometimes less than 0.1 ms. Because
AWS tends to deploy EC2 VMs of the same tenants into the
same host machine [78]. Nevertheless, this is not the case for
serverless computing. As multiple tenants share the same
Gateway infrastructure, the delay of ➋|➐ or ➍|➎ connection
is closer to the average intra-cloud delay.

1 2 3 4 5 6
Length of Function Chain

0

50

100

150

200

R
es

po
ns

e
La

te
nc

y
(m

s) OpenFaaS(TCP+TLS)
OpenFaaS(TCP)
QFaaS

Figure 8: Benefits of QFaaS with the function chain
library. The latency difference between QFaaS and Open-
FaaS (TCP+TLS) increases as the chain’s length increases
and reaches 85 ms (40%) when the length is 6.

Figure 6 shows the AWS Lambda intra-cloud latency per-
centiles in the same region. The majority lies in the range
from 0.5 ms to 3 ms. We will show the benefits of QFaaS
against these delays. In addition, the internal network delay
is also potentially very small. We thus specifically measure
the case of zero network delays by deploying all the platform
components and function workers in the same host machine.
We show the benefits of QFaaS under different cloud in-

ternal delays in Figure 7. The testing scenario is the same
as Figure 5 (a). As the internal delay increases, the response
latency will also increase. But the latency increase in QFaaS
is always smaller than that of its opponents.
Results: The colored regions in Figure 7 (as well as Fig-

ure 8) aremean values plus/minus standard deviations. Specif-
ically, when the internal network delay is 0, QFaaS is still 17%
faster than OpenFaaS (TCP+TLS). Because QFaaS can still
save processing delay costs of RTTs in the protocol stacks
compared with OpenFaaS (TCP+TLS). QFaaS maintains its
advantages over OpenFaaS (TCP+TLS) as the internal delay
increases. Their latency difference reaches 19 ms when the
internal delay is 3 ms. QFaaS becomes faster than insecure
OpenFaaS (TCP) after the internal delay is greater than 0.5
ms, and is 13% faster than OpenFaaS (TCP) when the internal
delay is 3 ms.

5.5 Function Chain Performance
In serverless applications, functions are commonly chained
together to perform a complete task flow. We measure the
benefits of using QFaaS function chain library in different
lengths of function chains in Figure 8. The experiment design
follows the nested function chain implementation in Server-
lessBench [81]. In a function chain, the end-user invokes the
ingress function; one function invokes another function and
returns until the invoked function responds. Other settings
are the same as in Figure 5 (a).

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Kaiyu Hou, Sen Lin, Yan Chen, and Vinod Yegneswaran

: Ingress Functions

: Database Services

: Access Services

: Database Functions

: Pure Functions

: Impure Functions

: Invoke Functions

: Email

API
Gateway

End-User Other Clients

ƒ12: Purchase
Product

ƒ13: Get
Price

ƒ14: Authorize
Credit Card

ƒ15: Publish
Result

ƒ1: Browser
Products

ƒ2: Create
Product

ƒ7: Register
Photographer

ƒ3: Request
Photo

ƒ5: Record
Assignment

ƒ4: Message
Photographer

ƒ8: Acquire
Photo

ƒ10: Photo
Success

ƒ11: Photo
Report

Product
Catalog

Credit Card
Registry

Photographer
RegistryPhoto Storage

ƒ6: Assign
Photographer

ƒ9: Receive
Photo

Chain 3

Chain 1

Chain 2

Figure 9: A reference architecture of the Hello, Retail! application. Rectangles represent serverless functions, and are
categorized into different colors by their attributes. They form 3 major function chains (See Table 1 for details).

Table 1: Evaluated Serverless Function Scenarios in the “Hello, Retail!” Application

Scenarios Function Function Name HTTP Method Function Function Name HTTP Method

Pure Functions ƒ10 Photo Success GET ƒ15 Publish Result POST
Database Functions ƒ1 Browse Products GET ƒ7 Register Photographer POST

Chain Functions
ƒ3 Request Photo POST Invoking a function chain: ƒ3→ ƒ4 → ƒ5→ ƒ6.
ƒ8 Acquire Photo POST Invoking a function chain: ƒ8→ ƒ9 → ƒ10 → ƒ11.
ƒ12 Purchase Product POST Invoking a function chain: ƒ12 → ƒ13 → ƒ14 → ƒ15.

Results:As shown in the result, compared with OpenFaaS
(TCP), regardless of the length of the function chain, QFaaS
always has a similar end-user response latency as the inse-
cure OpenFaaS (TCP). QFaaS always performs better than
OpenFaaS (TCP+TLS), and their latency difference increases
as the chain’s length increases. QFaaS is 85 ms (40%) faster
than OpenFaaS (TCP+TLS) when the chain length is 6.

5.6 Real-world Application Performance
Hello, Retail!. To better understand how QFaaS works in
production environments, we first conducted experiments
on a real-world serverless application Hello, Retail!. It imple-
ments a functional retail platform constructed by a set of
serverless functions and back-end services. Figure 9 shows
the reference architecture of Hello, Retail!. Please note, this
figure uses the serverless logic view instead of the actual
network-centric view, to highlight the application’s abstract
structure. It is a real-world serverless application originally
developed by Nordstrom on AWS Lambda. We ported the
entire Hello, Retail! application to the OpenFaaS platform
as described in prior work [23, 64]. It is also deployed into
QFaaS without any code modification.
As shown in Figure 9, Hello, Retail! consists of 15 func-

tions. These functions form 3 major function chains. Table 1
lists all scenarios we used in our experiments, covering the
most representative scenarios in this application. In terms of
whether a function accesses backend services and whether
it invokes a function chain, we classify the scenarios as:
• Pure Functions: The function only communicates with
the Gateway.

• Database Functions: The function will access back-end
services, e.g., database.

• Chain Functions: The ingress function that sequences a
function chain.

• Chain Functions with Function Chain Library: Chain
functions adopting the QFaaS function chain library.
Following the preceding experiment setting in Figure 5 (a),

we measured the end-user response latency by sending non-
continuous function requests. Figure 10 shows the results.
Results: (a) For pure functions, ƒ10 is invoked by GET

messages, and ƒ15 is invoked by POST messages. QFaaS and
QFaaS (POST1RTT) can achieve a similar acceleration as they
performed in single function evaluations (Figure 5). (b) For
database functions, though the performance boosts are di-
luted by the extra connections with databases or third-party
services, QFaaS can still achieve 7%-12% latency reduction
against OpenFaaS (TCP+TLS) while keeping comparable
performance as insecure OpenFaaS (TCP). (c) For chain func-
tions, QFaaS remains to outperform OpenFaaS (TCP+TLS)
by 14%-25% working in 0-RTT mode and 6%-10% working in
1-RTT mode. Additionally, QFaaS bonuses multiply to attain
up to 50 ms latency reduction, which would perceptibly im-
prove user experience. (d) To take full advantage of QFaaS,
we integrated the function chain library to ƒ12. Since the nat-
ural language efficiency distinction, where the original Hello,
Retail! is written in NodeJS and the QFaaS function chain
library is implemented in Go-lang, for comparison fairness,
we translated origin Chain 3 (ƒ12) in Go-lang. It shows a 21%
latency reduction. The results on Hello, Retail! demonstrate

QFaaS: Accelerating and Securing Serverless Cloud Networks with QUIC SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

ƒ10 ƒ15
Function

10

20

30

40

50

R
es

po
ns

e
La

te
nc

y
(m

s)

(a) Pure Functions

ƒ1 ƒ7
Function

35

75

115

155
(b) Database Functions

OpenFaaS(TCP)
QFaaS
QFaaS(POST1RTT)
OpenFaaS(TCP+TLS)

Chain 1 (ƒ3) Chain 2 (ƒ8) Chain 3 (ƒ12)
Function

80

120

160

200

240
(c) Chain Functions

Chain 3 (ƒ12)
Function

80

120

160

200

(d) w/ Chain Library

Figure 10: End-user response latency in the Hello, Retail! application. (a) Pure Functions: ƒ10 accepting GET requests.
ƒ15 accepting POST requests. QFaaS achieved the same results as in Figure 5. (b) Database Functions: ƒ1 accepting GET
requests. ƒ7 accepting POST requests. QFaaS is 12% faster than OpenFaaS (TCP+TLS); QFaaS (POST1RTT) is faster by 7%. (c)
Chain Functions: 14%-25% latency reduction (up to 50 ms) provided by QFaaS in one request; 6%-10% latency reduction with
QFaaS (POST1RTT). (d) Chain Functions with Function Chain Library: Chain 3 gaining a 21% performance boost.

POST
Request Method

30

50

70

90

R
es

po
ns

e
La

te
nc

y
(m

s)

(a) Cert Info

GET
Request Method

220

260

300

340

380
(b) Image Resizer

OpenFaaS(TCP)
QFaaS
QFaaS(POST1RTT)
OpenFaaS(TCP+TLS)

Figure 11: End-user response latency in the Cert Info
and the Image Resizer applications. (a) Cert Info: QFaaS
demonstrates similar improvements as in Figure 10 (b). (b)
Image Resizer: Compared to OpenFaaS (TCP+TLS), QFaaS
saves 26 ms while providing secured communications in
image transmission.

that cloud tenants can instantly gain the benefits of QFaaS
as synthetic serverless functions (§5.3).
Cert Info and Image Resizer. In addition to Hello, Retail!,
we then evaluated two more open-source serverless applica-
tions from OpenFaaS Function Store [58]. Both applications
are composed of a single serverless function but involve com-
munications to third parties. The Cert Info application [68]
accepts POST requests and will connect to the wide-area
networks. It leverages Go-lang standard libraries to fetch the
certificate information associated with the requested domain
name from the Internet. The Image Resizer application [72]
accepts GET requests and demandsmore computational over-
head than previous ones. It first downloads a large image file
and resizes it locally. The resized image will be put into the
GET response. Evaluation results are shown in Figure 11.

Results: (a) Cert Info: Compared to OpenFaaS (TCP+TLS),
which needs 16 more ms than OpenFaaS (TCP) to achieve

security, QFaaS and QFaaS (POST1RTT) only require half the
extra time, i.e., 8 ms and 10 ms, respectively. (b) Image Resizer :
QFaaS provides comparable end-user latency to OpenFaaS
(TCP) and is 26 ms faster than OpenFaaS (TCP+TLS).

Through our evaluations on real-world serverless appli-
cations, we believe serverless computing platforms will be
more attractive inmiscellaneousworkloads for existing cloud
applications when the low-latency requirement can be met.

6 RELATEDWORK
We present related research efforts of serverless computing
in §6.1 and the evolution and extensions of QUIC in §6.2.

6.1 Serverless Computing Research
The rising prominence of serverless computing has attracted
recent research interests in wide-ranging topics. We summa-
rize related work in the following closely-related categories:
security and access control, virtualization optimization, scal-
ing and scheduling, and performance benchmarking.
Security and Access Control. Trapeze [3] uses a language-

based dynamic information flow control (IFC) to secure
serverless functions. Each serverless function in Trapeze
is wrapped by a security IFC shim to share data stores and
exchange messages. Valve [23] employs function level flow
control to restrict unexpected function behaviors through
the network. WILL.IAM [64] encodes absolute and condi-
tional information flows into a graph to disallow access pol-
icy violations at the ingress. Nevertheless, these works all
rely on a solid secure transport layer provided by serverless
platforms. We believe that our work is complementary to
existing research on serverless security and access control.

Virtualization Optimization. Several research efforts have
attempted to develop lightweight virtualization techniques
to optimize the efficiency-security trade-off. AWS Firecracker

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Kaiyu Hou, Sen Lin, Yan Chen, and Vinod Yegneswaran

[1] and SEUSS [15] devised lightweight VMs (microVMs) to
accelerate function initialization. For instance, AWS Fire-
cracker [1] removes unnecessary features like BIOS, PCI,
and multi-OS support from traditional VMs. On the other
hand, gVisor [80] is a new security-oriented container de-
sign to guarantee strong isolation between the host OS and
containers. SCONE [4] utilizes the Intel SGX trusted comput-
ing to provide a secure container mechanism. All of these
designs can initialize a serverless function at the millisecond
scale, but make the adverse impact of connection setup la-
tency more significant. The approach adopted by QFaaS is
fundamentally different, but is also complementary to them.

Scaling and Scheduling. The cold-start problem is a major
drawback of serverless computing [34]. To achieve low cold-
start latency, vigorous approaches are proposed. SAND [2]
used fine-grained application sandboxing and hierarchical
message bus mechanisms. FnSched [69] mitigated the re-
source contention between collocated functions by dynami-
cally regulating the CPU shares. Nightcore [33] combined
multiple techniques in platform design, including a fast path
for internal function calls, efficient threading for I/O, etc.
Obetz et al. [56] and Archipelago [66] proposed to use graph
analysis to schedule function initialization in an efficient way.
QFaaS solves the cold-start problem from a different angle
of existing efforts. It can be combined with aforementioned
approaches to better tame this problem.

Serverless Performance Benchmarks.Benchmark suites, such
as ServerlessBench [81], SPEC-RG [76], FAASDOM [45], and
PanOpticon [67], were designed for serverless platforms to
characterize metrics such as communication efficiency, state-
less overhead, and performance isolation in different ways.
Research literature, including [28, 37, 40, 46, 78], measured
the performance differences in elasticity, latency, reliabil-
ity, I/O, and cost for major commercial serverless platforms
such as AWS, Google, Azure, and IBM. Our evaluation design
mainly draws on their work to demonstrate the benefits of
QFaaS in accelerating serverless networks.

6.2 QUIC: Evolution and Extensions
QUIC was first released by Google in 2013 [19], which was
informed by their experiments with the SPDY protocol [74].
This QUIC edition was later called gQUIC and brought to
the IETF in 2015. Google joined the IETF team to provide
a standardized protocol implementation called IETF QUIC,
which has been incorporated into the Chrome browser since
Oct. 2020 [20] and released as RFC 9000 [60] in May 2021. Nu-
merous open-source efforts, including major cloud providers,
have joined to provide the QUIC implementation based on
the IETF standard in different programming languages, such
as quic-go (Go) [43], MsQuic (C, Microsoft) [50], mvfst (C++,
Facebook) [27], and quiche (Rust, Cloudflare) [22].

After its success on the wide-area Internet, such as web
surfing and video streaming, QUIC has recently been ex-
tended to other broader network scenarios. Kumar et al. [38]
utilized QUIC in IoT scenarios and have shown that QUIC
largely benefits the connection migration for IoT devices.
Thomas et al. [75] demonstrate that compared with TLS,
QUIC can halve the page load time over the public satellite
communication system. Research literature, such as [12, 13],
integrated QUIC into the Tor network and provided empiri-
cal evaluation to show network acceleration.
Cicconetti et al. [21] conducted a preliminary evaluation

of the benefits of using QUIC for end-user to FaaS Gateway
connections in mobile networks (connection ➊|➑ in Figure 2
(b)). This is just another use case of QUIC on the wide-area
Internet and does not consider the new challenges brought
by the serverless paradigm in intra-platform connections
between Gateway and function workers (➋|➐, ➌|➏, and
➍|➎). To the best of our knowledge, QFaaS is the first work to
extend QUIC into the domain of serverless cloud platforms.

7 CONCLUSION
In this paper, we raise the challenge of accelerating communi-
cations while providing security in emerging serverless cloud
networks. To that end, we first abstract the network commu-
nication model for serverless computing systems and then
propose an extension of the QUIC protocol, called QFaaS,
that provides low latency serverless function communication
with improved security. We implement the QFaaS prototype
on the popular OpenFaaS platform such that it requires no
code modification for cloud tenants to gain network perfor-
mance boosts and security benefits. QFaaS function chain
library and always-on 0-RTT designs can further accelerate
serverless networking. Additionally, the QFaaS design can
also be easily extended to other prevalent serverless plat-
forms. Our evaluations on synthetic serverless functions and
real-world serverless applications demonstrate that QFaaS
can reduce the end-user response latency by 28% (in 0-RTT
mode) and 14% (in 1-RTT mode) compared to OpenFaaS
using TCP+TLS. We find that the performance benefits of
QFaaS linearly increase with the length of the function chain.
This was also validated against several real-world serverless
applications, where QFaaS obtained a maximum 50 ms re-
duction in latency. Overall, our findings validate that QFaaS
delivers a compelling performance and security enhance-
ment to the ecosystem of open-source serverless platforms.

ACKNOWLEDGMENTS
We thank our shepherd, Haggai Eran, and all anonymous
reviewers for their insightful feedback. This project is based
on work supported by the National Science Foundation (NSF)
under grant CNS 2229455.

QFaaS: Accelerating and Securing Serverless Cloud Networks with QUIC SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

REFERENCES
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight virtualization for serverless applications. In
USENIX NSDI.

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:
Towards High-Performance Serverless Computing. In USENIX ATC.

[3] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk,
Mooly Sagiv, Thomas Schmitz, and Keith Winstein. 2018. Secure
Serverless Computing Using Dynamic Information Flow Control. In
Object-Oriented Programming, Systems, Languages and Applications
(OOPLSA 18). ACM.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’keeffe, Mark L Stillwell, et al. 2016. SCONE: Secure linux containers
with intel SGX. In USENIX OSDI.

[5] AWS. 2014. Lambda – Serverless Computing. https://aws.amazon.c
om/lambda/.

[6] AWS. 2019. Announcing improved VPC networking for AWS Lambda
functions. https://aws.amazon.com/blogs/compute/announcing-
improved-vpc-networking-for-aws-lambda-functions/ Accessed on
2022-06-08.

[7] AWS. 2020. AmazonWeb Services: Overview of Security Processes. https:
//d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepap
er.pdf Accessed on 2022-06-08.

[8] AWS. 2021. Data protection in Amazon EC2 - encryption in transit.
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-
protection.html#encryption-transit Accessed on 2022-06-08.

[9] AWS. 2021. Lambda, AWS Boto3. https://boto3.amazonaws.com/v1/
documentation/api/latest/reference/services/lambda.htmll

[10] AWS. 2021. Security Overview of AWS Lambda: An In-Depth Look at
AWS Lambda Security. https://d1.awsstatic.com/whitepapers/Overvi
ew-AWS-Lambda-Security.pdf Accessed on 2022-06-08.

[11] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah,
Aleksander Slominski, et al. 2017. Serverless computing: Current
trends and open problems. In Research Advances in Cloud Computing.
Springer.

[12] Lamiaa Basyoni, Aiman Erbad, Mashael Alsabah, Noora Fetais, and
Mohsen Guizani. 2019. Empirical performance evaluation of QUIC
protocol for Tor anonymity network. In 15th International Wireless
Communications & Mobile Computing Conference (IWCMC 19). IEEE.

[13] Lamiaa Basyoni, Aiman Erbad, Mashael Alsabah, Noora Fetais, Amr
Mohamed, and Mohsen Guizani. 2021. QuicTor: Enhancing Tor for
Real-Time Communication Using QUIC Transport Protocol. IEEE
Access 9 (2021), 28769–28784.

[14] M. Bishop. 2022. HTTP/3. RFC 9114. IETF. https://www.rfc-editor.o
rg/rfc/rfc9114.txt

[15] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: skip redundant paths to make
serverless fast. In Proceedings of the Fifteenth European Conference on
Computer Systems (EuroSys 20).

[16] Xudong Cao, Shangru Zhao, and Yuqing Zhang. 2019. 0-RTT Attack
and Defense of QUIC Protocol. In 2019 IEEE Globecom Workshops (GC
Wkshps 19). IEEE.

[17] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. 2019. The rise of serverless computing. Commun. ACM 62,
12 (2019), 44–54.

[18] Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva, and
Cristina Nita-Rotaru. 2019. Secure communication channel establish-
ment: TLS 1.3 (over TCP fast open) vs. QUIC. In European Symposium
on Research in Computer Security (ESORICS 2019). Springer.

[19] Chromium Blog. 2013. Experimenting with QUIC. https://blog.chr
omium.org/2013/06/experimenting-with-quic.html Accessed on
2022-06-08.

[20] Chromium Blog. 2020. Chrome is deploying HTTP/3 and IETF QUIC.
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-
ietf-quic.html Accessed on 2022-06-08.

[21] Claudio Cicconetti, Leonardo Lossi, Enzo Mingozzi, and Andrea Pas-
sarella. 2021. A Preliminary Evaluation of QUIC for Mobile Serverless
Edge Applications. In 22nd IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks (WoWMoM).

[22] Cloudflare. 2018. quiche: Savoury implementation of the QUIC transport
protocol and HTTP/3. https://github.com/cloudflare/quiche

[23] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir
Rahmati, and Adam Bates. 2020. Valve: Securing Function Workflows
on Serverless Computing Platforms. In Proceedings of The Web Confer-
ence.

[24] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Ro-
chet, Thomas Given-Wilson, Axel Legay, Olivier Pereira, and Olivier
Bonaventure. 2019. Pluginizing quic. In ACM SIGCOMM.

[25] E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446. IETF.

[26] Lars Eggert. 2020. Towards securing the internet of things with quic.
In Workshop on Decentralized IoT Systems and Security (DISS 20).

[27] Facebook. 2019. mvfst: An implementation of the QUIC transport proto-
col. https://github.com/facebookincubator/mvfst

[28] Kamil Figiela, Adam Gajek, Adam Zima, Beata Obrok, and Maciej
Malawski. 2018. Performance evaluation of heterogeneous cloud func-
tions. Concurrency and Computation: Practice and Experience 30, 23
(2018), e4792.

[29] Google. 2017. Encryption in Transit in Google Cloud. https://cloud.go
ogle.com/security/encryption-in-transit Accessed on 2022-06-08.

[30] Google. 2021. Google Cloud Security Whitepapers. https://cloud.goog
le.com/security/overview/whitepaper Accessed on 2022-06-08.

[31] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 2017. 0-
RTT key exchange with full forward secrecy. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(Eurocrypt 17). Springer.

[32] Zach Hill, Jie Li, Ming Mao, Arkaitz Ruiz-Alvarez, and Marty
Humphrey. 2010. Early observations on the performance of Windows
Azure. In ACM HPDC.

[33] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient and scal-
able serverless computing for latency-sensitive, interactive microser-
vices. In ACM ASPLOS.

[34] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. 2019. Cloud programming simplified:
A berkeley view on serverless computing. arXiv preprint 1902.03383
(2019).

[35] Kenneth Reitz. 2011. Requests: HTTP for Humans. https://docs.python-
requests.org/en/master/. https://docs.python-requests.org/en/master/

[36] Hannah Kuchler. 2015. Hackers find suppliers are an easy way to target
companies. Accessed on 2022-06-08.

[37] Jörn Kuhlenkamp, Sebastian Werner, Maria C Borges, Dominik Ernst,
and Daniel Wenzel. 2020. Benchmarking elasticity of FaaS platforms as
a foundation for objective-driven design of serverless applications. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing
(SAC 20).

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/blogs/compute/announcing-improved-vpc-networking-for-aws-lambda-functions/
https://aws.amazon.com/blogs/compute/announcing-improved-vpc-networking-for-aws-lambda-functions/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html#encryption-transit
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html#encryption-transit
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lambda.htmll
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lambda.htmll
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://www.rfc-editor.org/rfc/rfc9114.txt
https://www.rfc-editor.org/rfc/rfc9114.txt
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html
https://github.com/cloudflare/quiche
https://github.com/facebookincubator/mvfst
https://cloud.google.com/security/encryption-in-transit
https://cloud.google.com/security/encryption-in-transit
https://cloud.google.com/security/overview/whitepaper
https://cloud.google.com/security/overview/whitepaper
https://docs.python-requests.org/en/master/
https://docs.python-requests.org/en/master/
https://docs.python-requests.org/en/master/

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Kaiyu Hou, Sen Lin, Yan Chen, and Vinod Yegneswaran

[38] Puneet Kumar and Behnam Dezfouli. 2019. Implementation and anal-
ysis of QUIC for MQTT. Computer Networks 150 (2019), 28–45.

[39] AdamLangley, Alistair Riddoch, AlyssaWilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, et al. 2017. The quic transport protocol: Design and internet-
scale deployment. In ACM SIGCOMM.

[40] Hyungro Lee, Kumar Satyam, and Geoffrey Fox. 2018. Evaluation
of production serverless computing environments. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD 18). IEEE.

[41] Shuhao Liu, Hong Xu, and Zhiping Cai. 2013. Low latency datacenter
networking: A short survey. arXiv preprint 1312.3455 (2013).

[42] OpenFaaS Ltd. 2016. OpenFaaS: Serverless Functions, Made Simple.
https://www.openfaas.com/.

[43] Lucas Clemente, et. al. 2016. quic-go: A QUIC implementation in pure
Go. https://github.com/lucas-clemente/quic-go

[44] M. Thomson, S. Turner. 2021. Using TLS to Secure QUIC. RFC 9001.
IETF.

[45] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. 2020.
FaaSdom: A benchmark suite for serverless computing. In Proceedings
of the 14th ACM International Conference on Distributed and Event-based
Systems (DEBS 20).

[46] Maciej Malawski, Kamil Figiela, Adam Gajek, and Adam Zima. 2017.
Benchmarking heterogeneous cloud functions. In European Conference
on Parallel Processing (Euro-Par 17). Springer.

[47] Markets and Markets. 2020. Serverless Architecture Market by Service
Type (Automation and Integration, Monitoring, API Management, Secu-
rity, Analytics, and Design and Consulting), Deployment Model, Orga-
nization Size, Vertical, and Region - Global Forecast to 2025. https:
//www.marketsandmarkets.com/Market-Reports/serverless-
architecture-market-64917099.html Accessed on 2022-06-08.

[48] Stephen Paul Marsh. 1994. Formalising trust as a computational con-
cept. University of Stirling (1994).

[49] Matt Adorjan. 2021. AWS Latency Monitoring. https://www.cloudpin
g.co/grid

[50] Microsoft. 2019. MsQuic: Cross-platform, C implementation of the IETF
QUIC protocol. https://github.com/microsoft/msquic

[51] Microsoft. 2021. Azure encryption overview. https://docs.microso
ft.com/en-us/azure/security/fundamentals/encryption-overview
Accessed on 2022-06-08.

[52] Microsoft. 2021. Azure security baseline for Azure Functions. https:
//docs.microsoft.com/en-us/security/benchmark/azure/baselines/fu
nctions-security-baseline Accessed on 2022-06-08.

[53] Nordstrom. 2017. Towards a serverless event-sourced Nordstrom. https:
//youtu.be/WcCErxLKR7g

[54] Nordstrom Technology. 2019. Hello, Retail! https://github.com/Nords
trom/hello-retail

[55] Matthew Obetz, Anirban Das, Timothy Castiglia, Stacy Patterson, and
Ana Milanova. 2020. Formalizing event-driven behavior of serverless
applications. In European Conference on Service-Oriented and Cloud
Computing (ESOCC 20). Springer.

[56] Matthew Obetz, Stacy Patterson, and Ana Milanova. 2019. Static
Call Graph Construction in AWS Lambda Serverless Applications. In
USENIX HotCloud.

[57] OpenFaaS Ltd. 2021. GitHub: openfaas/faas. https://github.com/openf
aas/faas

[58] OpenFaaS Ltd. 2022. OpenFaaS Function Store. https://github.com/ope
nfaas/store

[59] Diana Popescu, Noa Zilberman, and Andrew Moore. 2017. Charac-
terizing the impact of network latency on cloud-based applications’
performance. Computer Laboratory technical reports (2017).

[60] QUIC Working Group. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. IETF.

[61] R. Fielding, J. Gettys , J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee. 1999. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616.
IETF.

[62] Raphael Satter, Christopher Bing, Joseph Menn. 2020. Hackers used
SolarWinds’ dominance against it in sprawling spy campaign. https:
//www.reuters.com/article/global-cyber-solarwinds/hackers-at-
center-of-sprawling-spy-campaign-turned-solarwinds-dominance-
against-it-idUSKBN28P2N8 Accessed on 2022-06-08.

[63] Scott W Rose, Oliver Borchert, Stuart Mitchell, and Sean Connelly.
2020. Zero trust architecture. Special Publication, National Institute of
Standards and Technology (NIST SP), Gaithersburg, MD (2020).

[64] Arnav Sankaran, Pubali Datta, and Adam Bates. 2020. Workflow In-
tegration Alleviates Identity and Access Management in Serverless
Computing. In Annual Computer Security Applications Conference (AC-
SAC 20).

[65] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild:
Characterizing and optimizing the serverless workload at a large cloud
provider. In USENIX ATC.

[66] Arjun Singhvi, Kevin Houck, Arjun Balasubramanian, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. 2019. Archipelago: A scalable low-latency serverless platform.
arXiv preprint 1911.09849 (2019).

[67] Nikhila Somu, Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni.
2020. Panopticon: A comprehensive benchmarking tool for server-
less applications. In 2020 International Conference on Communication
Systems & NETworkS (COMSNETS 20). IEEE.

[68] Stefan Prodan. 2022. GitHub: stefanprodan/openfaas-certinfo. https:
//github.com/stefanprodan/openfaas-certinfo

[69] Amoghvarsha Suresh and Anshul Gandhi. 2019. Fnsched: An efficient
scheduler for serverless functions. In Proceedings of the 5th Interna-
tional Workshop on Serverless Computing.

[70] Erik Sy, Tobias Mueller, Christian Burkert, Hannes Federrath, and
Mathias Fischer. 2020. Enhanced Performance and Privacy for TLS
over TCP Fast Open. Proc. Priv. Enhancing Technol. 2020, 2 (2020),
271–287.

[71] Lizhuang Tan, Wei Su, Yanwen Liu, Xiaochuan Gao, and Wei Zhang.
2021. DCQUIC: Flexible and Reliable Software-defined Data Center
Transport. In IEEE INFOCOM Workshops. IEEE.

[72] Tarun Mangukiya. 2022. GitHub: tarunmangukiya/openfaas-functions.
https://github.com/tarunmangukiya/openfaas-functions

[73] The Apache Software Foundation. 2016. OpenWhisk, Open Source
Serverless Cloud Platform. https://openwhisk.apache.org/.

[74] The Chromium Projects. 2010. SPDY: An experimental protocol for a
faster web. http://www.chromium.org/spdy/spdy-whitepaper

[75] Ludovic Thomas, Emmanuel Dubois, Nicolas Kuhn, and Emmanuel
Lochin. 2019. Google QUIC performance over a public SATCOM access.
International Journal of Satellite Communications and Networking 37, 6
(2019), 601–611.

[76] Erwin Van Eyk, Joel Scheuner, Simon Eismann, Cristina L Abad, and
Alexandru Iosup. 2020. Beyond microbenchmarks: The spec-rg vi-
sion for a comprehensive serverless benchmark. In Companion of the
ACM/SPEC International Conference on Performance Engineering (ICPE
20).

[77] W3Techs. 2021. Usage statistics of QUIC for websites. https://w3techs
.com/technologies/details/ce-quic

[78] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking behind the curtains of serverless plat-
forms. In USENIX ATC.

[79] Y. Chen, J. Chu, S. Radhakrishnan, A. Jain. 2014. TCP Fast Open. RFC
7412. IETF.

https://www.openfaas.com/
https://github.com/lucas-clemente/quic-go
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
https://www.cloudping.co/grid
https://www.cloudping.co/grid
https://github.com/microsoft/msquic
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/functions-security-baseline
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/functions-security-baseline
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/functions-security-baseline
https://youtu.be/WcCErxLKR7g
https://youtu.be/WcCErxLKR7g
https://github.com/Nordstrom/hello-retail
https://github.com/Nordstrom/hello-retail
https://github.com/openfaas/faas
https://github.com/openfaas/faas
https://github.com/openfaas/store
https://github.com/openfaas/store
https://www.reuters.com/article/global-cyber-solarwinds/hackers-at-center-of-sprawling-spy-campaign-turned-solarwinds-dominance-against-it-idUSKBN28P2N8
https://www.reuters.com/article/global-cyber-solarwinds/hackers-at-center-of-sprawling-spy-campaign-turned-solarwinds-dominance-against-it-idUSKBN28P2N8
https://www.reuters.com/article/global-cyber-solarwinds/hackers-at-center-of-sprawling-spy-campaign-turned-solarwinds-dominance-against-it-idUSKBN28P2N8
https://www.reuters.com/article/global-cyber-solarwinds/hackers-at-center-of-sprawling-spy-campaign-turned-solarwinds-dominance-against-it-idUSKBN28P2N8
https://github.com/stefanprodan/openfaas-certinfo
https://github.com/stefanprodan/openfaas-certinfo
https://github.com/tarunmangukiya/openfaas-functions
https://openwhisk.apache.org/
http://www.chromium.org/spdy/spdy-whitepaper
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-quic

QFaaS: Accelerating and Securing Serverless Cloud Networks with QUIC SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

[80] Ethan G Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. 2019. The true cost of con-
taining: A gVisor case study. In USENIX HotCloud.

[81] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
serverless platforms with serverlessbench. In Proceedings of the 11th
ACM Symposium on Cloud Computing (SoCC 20).

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Serverless Computing
	2.2 Connection Encryption for Zero Trust
	2.3 Connection Setup Latency: New Challenge

	3 QFaaS: System Design
	3.1 QUIC Protocol for Serverless Networks
	3.2 Modeling Serverless Networks
	3.3 QFaaS System Architecture
	3.4 Function Chain Library
	3.5 Always-on 0-RTT QUIC

	4 QFaaS: System Implementation
	4.1 QFaaS Prototype on OpenFaaS
	4.2 QUIC 0-RTT Activation
	4.3 Platform Universality

	5 Evaluation
	5.1 Testbed and Experiment Settings
	5.2 Function Image Overheads
	5.3 Single Function Performance
	5.4 Variant Intra-Cloud Delays
	5.5 Function Chain Performance
	5.6 Real-world Application Performance

	6 Related Work
	6.1 Serverless Computing Research
	6.2 QUIC: Evolution and Extensions

	7 Conclusion
	Acknowledgments
	References

